Loading…

Environment-stimulated nanocarriers enabling multi-active sites for high drug encapsulation as an "on demand" drug release system

Limited active sites in polyesters hinder fabrication of multifunctional biodegradable nanocarriers for successful clinical applications. Herein, poly(malic acid) (PMA)-based biodegradable polyesters bearing large carboxyl groups in their side chains were grafted with intracellular reductive-sensiti...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2018-04, Vol.6 (15), p.2258-2273
Main Authors: Cheng, F. R, Su, T, Cao, J, Luo, X. L, Li, Li, Pu, Yuji, He, B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-a678a26964d65277689e9c310907a1e88ea00fb9770b25c90127abcacf3eef023
cites cdi_FETCH-LOGICAL-c337t-a678a26964d65277689e9c310907a1e88ea00fb9770b25c90127abcacf3eef023
container_end_page 2273
container_issue 15
container_start_page 2258
container_title Journal of materials chemistry. B, Materials for biology and medicine
container_volume 6
creator Cheng, F. R
Su, T
Cao, J
Luo, X. L
Li, Li
Pu, Yuji
He, B
description Limited active sites in polyesters hinder fabrication of multifunctional biodegradable nanocarriers for successful clinical applications. Herein, poly(malic acid) (PMA)-based biodegradable polyesters bearing large carboxyl groups in their side chains were grafted with intracellular reductive-sensitive polyethylene glycol and imidazole to construct bioreducible nanocarriers (PLM- g -ss-EGA). The uniform spherical shape and high stability of the PLM- g -ss-EGA nanocarriers were demonstrated by dynamic light scattering (DLS) and dissipative particle dynamics (DPD) simulations. Enhanced interaction between the monomers in this novel nanocarrier doubled its drug loading efficiency (15%) as compared to that of traditional polyester nanocarriers (5-7%). Moreover, stimulus-responsive assessment and in vitro drug release studies showed that these bioreducible nanocarriers can balance extracellular stability in blood circulation and intracellular "on demand" release. In vitro and in vivo assays have demonstrated that these bioreducible nanocarriers not only can substantially enhance antitumor efficacy as compared to insensitive micelles and even comparably to free DOX·HCl, but can also greatly reduce unwanted side effects in other organs. The encouraging anticancer efficiency of these poly(malic acid)-based nanocarriers opens a new avenue to design multifunctional biodegradable polyester drug-delivery systems. Limited active sites in polyesters hinder fabrication of multifunctional biodegradable nanocarriers for successful clinical applications.
doi_str_mv 10.1039/c8tb00132d
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c8tb00132d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387254618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-a678a26964d65277689e9c310907a1e88ea00fb9770b25c90127abcacf3eef023</originalsourceid><addsrcrecordid>eNpd0cFrFDEUBvAgFltqL96VUC9FmPqS7CSZo65VC4VeKngb3mTebFNmMmuSKfTof27arSuYSx68Hx8hH2NvBJwLUM1HZ3MHIJTsX7AjCTVUphb25X6Gn4fsJKU7KMcKbdXqFTtUUtarWusj9vsi3Ps4h4lCrlL20zJipp4HDLPDGD3FxClgN_qw4WWbfYUu-3viyWdKfJgjv_WbW97HZVOkw216zPBz4Jg4Bn5app4mDP3pDkUaCVMJeEiZptfsYMAx0cnzfcx-fL24WX-vrq6_Xa4_XVVOKZMr1Mai1I1e9bqWxmjbUOOUgAYMCrKWEGDoGmOgk7VrQEiDnUM3KKIBpDpmZ7vcbZx_LZRyO_nkaBwx0LykVipryq9oYQt9_x-9m5cYyutaCVKvrDJCF_Vhp1ycU4o0tNvoJ4wPrYD2sZt2bW8-P3XzpeB3z5FLN1G_p3-bKODtDsTk9tt_5ao_geyUJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2026483716</pqid></control><display><type>article</type><title>Environment-stimulated nanocarriers enabling multi-active sites for high drug encapsulation as an "on demand" drug release system</title><source>Royal Society of Chemistry</source><creator>Cheng, F. R ; Su, T ; Cao, J ; Luo, X. L ; Li, Li ; Pu, Yuji ; He, B</creator><creatorcontrib>Cheng, F. R ; Su, T ; Cao, J ; Luo, X. L ; Li, Li ; Pu, Yuji ; He, B</creatorcontrib><description>Limited active sites in polyesters hinder fabrication of multifunctional biodegradable nanocarriers for successful clinical applications. Herein, poly(malic acid) (PMA)-based biodegradable polyesters bearing large carboxyl groups in their side chains were grafted with intracellular reductive-sensitive polyethylene glycol and imidazole to construct bioreducible nanocarriers (PLM- g -ss-EGA). The uniform spherical shape and high stability of the PLM- g -ss-EGA nanocarriers were demonstrated by dynamic light scattering (DLS) and dissipative particle dynamics (DPD) simulations. Enhanced interaction between the monomers in this novel nanocarrier doubled its drug loading efficiency (15%) as compared to that of traditional polyester nanocarriers (5-7%). Moreover, stimulus-responsive assessment and in vitro drug release studies showed that these bioreducible nanocarriers can balance extracellular stability in blood circulation and intracellular "on demand" release. In vitro and in vivo assays have demonstrated that these bioreducible nanocarriers not only can substantially enhance antitumor efficacy as compared to insensitive micelles and even comparably to free DOX·HCl, but can also greatly reduce unwanted side effects in other organs. The encouraging anticancer efficiency of these poly(malic acid)-based nanocarriers opens a new avenue to design multifunctional biodegradable polyester drug-delivery systems. Limited active sites in polyesters hinder fabrication of multifunctional biodegradable nanocarriers for successful clinical applications.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/c8tb00132d</identifier><identifier>PMID: 32254566</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anticancer properties ; Antitumor activity ; Biodegradability ; Biodegradation ; Blood circulation ; Drug delivery systems ; Drug development ; Dynamic stability ; Fabrication ; Imidazole ; Intracellular ; Light scattering ; Monomers ; Organs ; Photon correlation spectroscopy ; Polyester resins ; Polyesters ; Polyethylene glycol ; Polymalic acid ; Side effects ; Therapeutic applications</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2018-04, Vol.6 (15), p.2258-2273</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-a678a26964d65277689e9c310907a1e88ea00fb9770b25c90127abcacf3eef023</citedby><cites>FETCH-LOGICAL-c337t-a678a26964d65277689e9c310907a1e88ea00fb9770b25c90127abcacf3eef023</cites><orcidid>0000-0002-5591-2299 ; 0000-0003-3041-3933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32254566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, F. R</creatorcontrib><creatorcontrib>Su, T</creatorcontrib><creatorcontrib>Cao, J</creatorcontrib><creatorcontrib>Luo, X. L</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Pu, Yuji</creatorcontrib><creatorcontrib>He, B</creatorcontrib><title>Environment-stimulated nanocarriers enabling multi-active sites for high drug encapsulation as an "on demand" drug release system</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>Limited active sites in polyesters hinder fabrication of multifunctional biodegradable nanocarriers for successful clinical applications. Herein, poly(malic acid) (PMA)-based biodegradable polyesters bearing large carboxyl groups in their side chains were grafted with intracellular reductive-sensitive polyethylene glycol and imidazole to construct bioreducible nanocarriers (PLM- g -ss-EGA). The uniform spherical shape and high stability of the PLM- g -ss-EGA nanocarriers were demonstrated by dynamic light scattering (DLS) and dissipative particle dynamics (DPD) simulations. Enhanced interaction between the monomers in this novel nanocarrier doubled its drug loading efficiency (15%) as compared to that of traditional polyester nanocarriers (5-7%). Moreover, stimulus-responsive assessment and in vitro drug release studies showed that these bioreducible nanocarriers can balance extracellular stability in blood circulation and intracellular "on demand" release. In vitro and in vivo assays have demonstrated that these bioreducible nanocarriers not only can substantially enhance antitumor efficacy as compared to insensitive micelles and even comparably to free DOX·HCl, but can also greatly reduce unwanted side effects in other organs. The encouraging anticancer efficiency of these poly(malic acid)-based nanocarriers opens a new avenue to design multifunctional biodegradable polyester drug-delivery systems. Limited active sites in polyesters hinder fabrication of multifunctional biodegradable nanocarriers for successful clinical applications.</description><subject>Anticancer properties</subject><subject>Antitumor activity</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Blood circulation</subject><subject>Drug delivery systems</subject><subject>Drug development</subject><subject>Dynamic stability</subject><subject>Fabrication</subject><subject>Imidazole</subject><subject>Intracellular</subject><subject>Light scattering</subject><subject>Monomers</subject><subject>Organs</subject><subject>Photon correlation spectroscopy</subject><subject>Polyester resins</subject><subject>Polyesters</subject><subject>Polyethylene glycol</subject><subject>Polymalic acid</subject><subject>Side effects</subject><subject>Therapeutic applications</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0cFrFDEUBvAgFltqL96VUC9FmPqS7CSZo65VC4VeKngb3mTebFNmMmuSKfTof27arSuYSx68Hx8hH2NvBJwLUM1HZ3MHIJTsX7AjCTVUphb25X6Gn4fsJKU7KMcKbdXqFTtUUtarWusj9vsi3Ps4h4lCrlL20zJipp4HDLPDGD3FxClgN_qw4WWbfYUu-3viyWdKfJgjv_WbW97HZVOkw216zPBz4Jg4Bn5app4mDP3pDkUaCVMJeEiZptfsYMAx0cnzfcx-fL24WX-vrq6_Xa4_XVVOKZMr1Mai1I1e9bqWxmjbUOOUgAYMCrKWEGDoGmOgk7VrQEiDnUM3KKIBpDpmZ7vcbZx_LZRyO_nkaBwx0LykVipryq9oYQt9_x-9m5cYyutaCVKvrDJCF_Vhp1ycU4o0tNvoJ4wPrYD2sZt2bW8-P3XzpeB3z5FLN1G_p3-bKODtDsTk9tt_5ao_geyUJA</recordid><startdate>20180421</startdate><enddate>20180421</enddate><creator>Cheng, F. R</creator><creator>Su, T</creator><creator>Cao, J</creator><creator>Luo, X. L</creator><creator>Li, Li</creator><creator>Pu, Yuji</creator><creator>He, B</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5591-2299</orcidid><orcidid>https://orcid.org/0000-0003-3041-3933</orcidid></search><sort><creationdate>20180421</creationdate><title>Environment-stimulated nanocarriers enabling multi-active sites for high drug encapsulation as an "on demand" drug release system</title><author>Cheng, F. R ; Su, T ; Cao, J ; Luo, X. L ; Li, Li ; Pu, Yuji ; He, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-a678a26964d65277689e9c310907a1e88ea00fb9770b25c90127abcacf3eef023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anticancer properties</topic><topic>Antitumor activity</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Blood circulation</topic><topic>Drug delivery systems</topic><topic>Drug development</topic><topic>Dynamic stability</topic><topic>Fabrication</topic><topic>Imidazole</topic><topic>Intracellular</topic><topic>Light scattering</topic><topic>Monomers</topic><topic>Organs</topic><topic>Photon correlation spectroscopy</topic><topic>Polyester resins</topic><topic>Polyesters</topic><topic>Polyethylene glycol</topic><topic>Polymalic acid</topic><topic>Side effects</topic><topic>Therapeutic applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, F. R</creatorcontrib><creatorcontrib>Su, T</creatorcontrib><creatorcontrib>Cao, J</creatorcontrib><creatorcontrib>Luo, X. L</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Pu, Yuji</creatorcontrib><creatorcontrib>He, B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, F. R</au><au>Su, T</au><au>Cao, J</au><au>Luo, X. L</au><au>Li, Li</au><au>Pu, Yuji</au><au>He, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environment-stimulated nanocarriers enabling multi-active sites for high drug encapsulation as an "on demand" drug release system</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2018-04-21</date><risdate>2018</risdate><volume>6</volume><issue>15</issue><spage>2258</spage><epage>2273</epage><pages>2258-2273</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>Limited active sites in polyesters hinder fabrication of multifunctional biodegradable nanocarriers for successful clinical applications. Herein, poly(malic acid) (PMA)-based biodegradable polyesters bearing large carboxyl groups in their side chains were grafted with intracellular reductive-sensitive polyethylene glycol and imidazole to construct bioreducible nanocarriers (PLM- g -ss-EGA). The uniform spherical shape and high stability of the PLM- g -ss-EGA nanocarriers were demonstrated by dynamic light scattering (DLS) and dissipative particle dynamics (DPD) simulations. Enhanced interaction between the monomers in this novel nanocarrier doubled its drug loading efficiency (15%) as compared to that of traditional polyester nanocarriers (5-7%). Moreover, stimulus-responsive assessment and in vitro drug release studies showed that these bioreducible nanocarriers can balance extracellular stability in blood circulation and intracellular "on demand" release. In vitro and in vivo assays have demonstrated that these bioreducible nanocarriers not only can substantially enhance antitumor efficacy as compared to insensitive micelles and even comparably to free DOX·HCl, but can also greatly reduce unwanted side effects in other organs. The encouraging anticancer efficiency of these poly(malic acid)-based nanocarriers opens a new avenue to design multifunctional biodegradable polyester drug-delivery systems. Limited active sites in polyesters hinder fabrication of multifunctional biodegradable nanocarriers for successful clinical applications.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32254566</pmid><doi>10.1039/c8tb00132d</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5591-2299</orcidid><orcidid>https://orcid.org/0000-0003-3041-3933</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-750X
ispartof Journal of materials chemistry. B, Materials for biology and medicine, 2018-04, Vol.6 (15), p.2258-2273
issn 2050-750X
2050-7518
language eng
recordid cdi_rsc_primary_c8tb00132d
source Royal Society of Chemistry
subjects Anticancer properties
Antitumor activity
Biodegradability
Biodegradation
Blood circulation
Drug delivery systems
Drug development
Dynamic stability
Fabrication
Imidazole
Intracellular
Light scattering
Monomers
Organs
Photon correlation spectroscopy
Polyester resins
Polyesters
Polyethylene glycol
Polymalic acid
Side effects
Therapeutic applications
title Environment-stimulated nanocarriers enabling multi-active sites for high drug encapsulation as an "on demand" drug release system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A39%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environment-stimulated%20nanocarriers%20enabling%20multi-active%20sites%20for%20high%20drug%20encapsulation%20as%20an%20%22on%20demand%22%20drug%20release%20system&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Cheng,%20F.%20R&rft.date=2018-04-21&rft.volume=6&rft.issue=15&rft.spage=2258&rft.epage=2273&rft.pages=2258-2273&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/c8tb00132d&rft_dat=%3Cproquest_rsc_p%3E2387254618%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-a678a26964d65277689e9c310907a1e88ea00fb9770b25c90127abcacf3eef023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2026483716&rft_id=info:pmid/32254566&rfr_iscdi=true