Loading…

Biomembrane induced self-assembly of peptide with enhanced antimicrobial activity

Antimicrobial peptides (AMPs) as biocides are of great interest because they have the ability to combat antibiotic resistance. Normally, natural AMPs need to be rationally designed or modified for practical use as an antibiotic. Here, a novel AMP, termed FF8, which is a cationic octapeptide composed...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials science 2020-03, Vol.8 (7), p.231-239
Main Authors: Shen, Zhiwei, Guo, Zhen, Zhou, Limin, Wang, Yujiao, Zhang, Jinjin, Hu, Jun, Zhang, Yi
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Antimicrobial peptides (AMPs) as biocides are of great interest because they have the ability to combat antibiotic resistance. Normally, natural AMPs need to be rationally designed or modified for practical use as an antibiotic. Here, a novel AMP, termed FF8, which is a cationic octapeptide composed of arginine, lysine, and phenylalanine, was designed. The FF8 was found to self-assemble into nanofibers when induced by a negatively charged lipid membrane or pH is above 9.4. The fibers on the membrane broke the lipid membrane, forming pores and significantly reducing its fluidity. FF8 also exhibited enhanced antibacterial activity by significantly increasing the permeability of the inner and outer membranes of Escherichia coli ( E. coli ) and maintaining the pores of the inner membrane of cells, which caused continuous membrane leakage. Because of its high antibacterial activity, cytocompatibility, and cost-effectiveness, FF8 is a promising antibacterial material. FF8 self-assembled into nanofibers on the negatively charged lipid membrane and induced rupture of the membrane.
ISSN:2047-4830
2047-4849
DOI:10.1039/c9bm01785b