Loading…

Enhancement of the supercapacitive properties of laser deposited graphene-based electrodes through carbon nanotube loading and nitrogen doping

Several technological routes are being investigated for improving the energy storage capability and power delivery of electrochemical capacitors. In this work, ternary hybrid electrodes composed of conducting graphene/reduced graphene oxide (rGO), which store charge mainly through electric double-la...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2019, Vol.21 (45), p.25175-25186
Main Authors: Pérez del Pino, Ángel, Rodríguez López, Marta, Ramadan, Mohamed Ahmed, García Lebière, Pablo, Logofatu, Constantin, Martínez-Rovira, Immaculada, Yousef, Ibraheem, György, Enikö
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c413t-9d161f05d96fcb54a4d68ba1cbc581288e2bb25ef790f664636a07067a68e8f03
cites cdi_FETCH-LOGICAL-c413t-9d161f05d96fcb54a4d68ba1cbc581288e2bb25ef790f664636a07067a68e8f03
container_end_page 25186
container_issue 45
container_start_page 25175
container_title Physical chemistry chemical physics : PCCP
container_volume 21
creator Pérez del Pino, Ángel
Rodríguez López, Marta
Ramadan, Mohamed Ahmed
García Lebière, Pablo
Logofatu, Constantin
Martínez-Rovira, Immaculada
Yousef, Ibraheem
György, Enikö
description Several technological routes are being investigated for improving the energy storage capability and power delivery of electrochemical capacitors. In this work, ternary hybrid electrodes composed of conducting graphene/reduced graphene oxide (rGO), which store charge mainly through electric double-layer mechanisms, covered by NiO nanostructures, for adding pseudocapacitance, were fabricated through a matrix assisted pulsed laser evaporation technique. The incorporation of multiwall carbon nanotubes (MWCNTs) provokes an increase of the porosity and thus, a substantial enhancement of the electrodes' capacitance (from 4 to 20 F cm −3 at 10 mV s −1 ). Volumetric capacitances of 34 F cm −3 were also obtained with electrodes containing just carbon nanotubes coated with NiO nanostructures. Moreover, the use of nitrogen containing precursors (ammonia, urea) for laser-induced N-doping of the nanocarbons also provokes a notable increase of the capacitance. Remarkably, N-containing groups in rGO-MWCNTs mainly add electric double layer charge storage, pointing to an increase of electrode porosity, whereas redox reactions contribute with a minor diffusion fraction. It was also observed that the loading of carbon nanotubes leads to an increase of diffusion-controlled charge storage mechanisms versus capacitive ones in rGO-based electrodes, the opposite effect being observed in graphene electrodes. Laser-deposited graphene-based electrodes for supercapacitors show significant improvement of capacitance after loading with carbon nanotubes and nitrogen doping. Several electrochemical mechanisms act in the charge storage process.
doi_str_mv 10.1039/c9cp04237g
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9cp04237g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315934200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-9d161f05d96fcb54a4d68ba1cbc581288e2bb25ef790f664636a07067a68e8f03</originalsourceid><addsrcrecordid>eNp90ctKxTAQBuAiCl437oWIGxGqSdOmzVIO3kDQha5LmkzaSk8Sk1TwJXxmczyi4MJVhpmPIcOfZYcEnxNM-YXk0uGyoHW_ke2QktGc46bc_Klrtp3thvCCMSYVoTvZx5UZhJGwBBOR1SgOgMLswEvhhBzj-AbIeZsacYSwEpMI4JECZ8MYQaHeCzeAgbxLA4VgAhm9VQnHwdu5H5AUvrMGGWFsnDtAkxVqND0SRiEzJtyDQcq61NvPtrSYAhx8v3vZ8_XV0-I2v3-4uVtc3ueyJDTmXBFGNK4UZ1p2VSlKxZpOENnJqiFF00DRdUUFuuZYM5ZuZwLXmNWCNdBoTPey0_XedNvrDCG2yzFImCZhwM6hLSgpqqrknCd68oe-2Nmb9LuVqjgtC7xaeLZW0tsQPOjW-XEp_HtLcLuKpl3wxeNXNDcJH62xD_LH_UaX5sf_zVunNP0EtlmZRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315934200</pqid></control><display><type>article</type><title>Enhancement of the supercapacitive properties of laser deposited graphene-based electrodes through carbon nanotube loading and nitrogen doping</title><source>Royal Society of Chemistry</source><creator>Pérez del Pino, Ángel ; Rodríguez López, Marta ; Ramadan, Mohamed Ahmed ; García Lebière, Pablo ; Logofatu, Constantin ; Martínez-Rovira, Immaculada ; Yousef, Ibraheem ; György, Enikö</creator><creatorcontrib>Pérez del Pino, Ángel ; Rodríguez López, Marta ; Ramadan, Mohamed Ahmed ; García Lebière, Pablo ; Logofatu, Constantin ; Martínez-Rovira, Immaculada ; Yousef, Ibraheem ; György, Enikö</creatorcontrib><description>Several technological routes are being investigated for improving the energy storage capability and power delivery of electrochemical capacitors. In this work, ternary hybrid electrodes composed of conducting graphene/reduced graphene oxide (rGO), which store charge mainly through electric double-layer mechanisms, covered by NiO nanostructures, for adding pseudocapacitance, were fabricated through a matrix assisted pulsed laser evaporation technique. The incorporation of multiwall carbon nanotubes (MWCNTs) provokes an increase of the porosity and thus, a substantial enhancement of the electrodes' capacitance (from 4 to 20 F cm −3 at 10 mV s −1 ). Volumetric capacitances of 34 F cm −3 were also obtained with electrodes containing just carbon nanotubes coated with NiO nanostructures. Moreover, the use of nitrogen containing precursors (ammonia, urea) for laser-induced N-doping of the nanocarbons also provokes a notable increase of the capacitance. Remarkably, N-containing groups in rGO-MWCNTs mainly add electric double layer charge storage, pointing to an increase of electrode porosity, whereas redox reactions contribute with a minor diffusion fraction. It was also observed that the loading of carbon nanotubes leads to an increase of diffusion-controlled charge storage mechanisms versus capacitive ones in rGO-based electrodes, the opposite effect being observed in graphene electrodes. Laser-deposited graphene-based electrodes for supercapacitors show significant improvement of capacitance after loading with carbon nanotubes and nitrogen doping. Several electrochemical mechanisms act in the charge storage process.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp04237g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ammonia ; Capacitance ; Carbon ; Coated electrodes ; Doping ; Electric charge ; Electric double layer ; Electrodes ; Energy storage ; Graphene ; Laser deposition ; Lasers ; Multi wall carbon nanotubes ; Nanostructure ; Nickel oxides ; Nitrogen ; Porosity ; Pulsed lasers ; Redox reactions</subject><ispartof>Physical chemistry chemical physics : PCCP, 2019, Vol.21 (45), p.25175-25186</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-9d161f05d96fcb54a4d68ba1cbc581288e2bb25ef790f664636a07067a68e8f03</citedby><cites>FETCH-LOGICAL-c413t-9d161f05d96fcb54a4d68ba1cbc581288e2bb25ef790f664636a07067a68e8f03</cites><orcidid>0000-0001-9792-6675 ; 0000-0001-7818-8611 ; 0000-0001-6311-5823 ; 0000-0002-1405-6027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Pérez del Pino, Ángel</creatorcontrib><creatorcontrib>Rodríguez López, Marta</creatorcontrib><creatorcontrib>Ramadan, Mohamed Ahmed</creatorcontrib><creatorcontrib>García Lebière, Pablo</creatorcontrib><creatorcontrib>Logofatu, Constantin</creatorcontrib><creatorcontrib>Martínez-Rovira, Immaculada</creatorcontrib><creatorcontrib>Yousef, Ibraheem</creatorcontrib><creatorcontrib>György, Enikö</creatorcontrib><title>Enhancement of the supercapacitive properties of laser deposited graphene-based electrodes through carbon nanotube loading and nitrogen doping</title><title>Physical chemistry chemical physics : PCCP</title><description>Several technological routes are being investigated for improving the energy storage capability and power delivery of electrochemical capacitors. In this work, ternary hybrid electrodes composed of conducting graphene/reduced graphene oxide (rGO), which store charge mainly through electric double-layer mechanisms, covered by NiO nanostructures, for adding pseudocapacitance, were fabricated through a matrix assisted pulsed laser evaporation technique. The incorporation of multiwall carbon nanotubes (MWCNTs) provokes an increase of the porosity and thus, a substantial enhancement of the electrodes' capacitance (from 4 to 20 F cm −3 at 10 mV s −1 ). Volumetric capacitances of 34 F cm −3 were also obtained with electrodes containing just carbon nanotubes coated with NiO nanostructures. Moreover, the use of nitrogen containing precursors (ammonia, urea) for laser-induced N-doping of the nanocarbons also provokes a notable increase of the capacitance. Remarkably, N-containing groups in rGO-MWCNTs mainly add electric double layer charge storage, pointing to an increase of electrode porosity, whereas redox reactions contribute with a minor diffusion fraction. It was also observed that the loading of carbon nanotubes leads to an increase of diffusion-controlled charge storage mechanisms versus capacitive ones in rGO-based electrodes, the opposite effect being observed in graphene electrodes. Laser-deposited graphene-based electrodes for supercapacitors show significant improvement of capacitance after loading with carbon nanotubes and nitrogen doping. Several electrochemical mechanisms act in the charge storage process.</description><subject>Ammonia</subject><subject>Capacitance</subject><subject>Carbon</subject><subject>Coated electrodes</subject><subject>Doping</subject><subject>Electric charge</subject><subject>Electric double layer</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>Laser deposition</subject><subject>Lasers</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanostructure</subject><subject>Nickel oxides</subject><subject>Nitrogen</subject><subject>Porosity</subject><subject>Pulsed lasers</subject><subject>Redox reactions</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90ctKxTAQBuAiCl437oWIGxGqSdOmzVIO3kDQha5LmkzaSk8Sk1TwJXxmczyi4MJVhpmPIcOfZYcEnxNM-YXk0uGyoHW_ke2QktGc46bc_Klrtp3thvCCMSYVoTvZx5UZhJGwBBOR1SgOgMLswEvhhBzj-AbIeZsacYSwEpMI4JECZ8MYQaHeCzeAgbxLA4VgAhm9VQnHwdu5H5AUvrMGGWFsnDtAkxVqND0SRiEzJtyDQcq61NvPtrSYAhx8v3vZ8_XV0-I2v3-4uVtc3ueyJDTmXBFGNK4UZ1p2VSlKxZpOENnJqiFF00DRdUUFuuZYM5ZuZwLXmNWCNdBoTPey0_XedNvrDCG2yzFImCZhwM6hLSgpqqrknCd68oe-2Nmb9LuVqjgtC7xaeLZW0tsQPOjW-XEp_HtLcLuKpl3wxeNXNDcJH62xD_LH_UaX5sf_zVunNP0EtlmZRA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Pérez del Pino, Ángel</creator><creator>Rodríguez López, Marta</creator><creator>Ramadan, Mohamed Ahmed</creator><creator>García Lebière, Pablo</creator><creator>Logofatu, Constantin</creator><creator>Martínez-Rovira, Immaculada</creator><creator>Yousef, Ibraheem</creator><creator>György, Enikö</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9792-6675</orcidid><orcidid>https://orcid.org/0000-0001-7818-8611</orcidid><orcidid>https://orcid.org/0000-0001-6311-5823</orcidid><orcidid>https://orcid.org/0000-0002-1405-6027</orcidid></search><sort><creationdate>2019</creationdate><title>Enhancement of the supercapacitive properties of laser deposited graphene-based electrodes through carbon nanotube loading and nitrogen doping</title><author>Pérez del Pino, Ángel ; Rodríguez López, Marta ; Ramadan, Mohamed Ahmed ; García Lebière, Pablo ; Logofatu, Constantin ; Martínez-Rovira, Immaculada ; Yousef, Ibraheem ; György, Enikö</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-9d161f05d96fcb54a4d68ba1cbc581288e2bb25ef790f664636a07067a68e8f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ammonia</topic><topic>Capacitance</topic><topic>Carbon</topic><topic>Coated electrodes</topic><topic>Doping</topic><topic>Electric charge</topic><topic>Electric double layer</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>Laser deposition</topic><topic>Lasers</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanostructure</topic><topic>Nickel oxides</topic><topic>Nitrogen</topic><topic>Porosity</topic><topic>Pulsed lasers</topic><topic>Redox reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez del Pino, Ángel</creatorcontrib><creatorcontrib>Rodríguez López, Marta</creatorcontrib><creatorcontrib>Ramadan, Mohamed Ahmed</creatorcontrib><creatorcontrib>García Lebière, Pablo</creatorcontrib><creatorcontrib>Logofatu, Constantin</creatorcontrib><creatorcontrib>Martínez-Rovira, Immaculada</creatorcontrib><creatorcontrib>Yousef, Ibraheem</creatorcontrib><creatorcontrib>György, Enikö</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez del Pino, Ángel</au><au>Rodríguez López, Marta</au><au>Ramadan, Mohamed Ahmed</au><au>García Lebière, Pablo</au><au>Logofatu, Constantin</au><au>Martínez-Rovira, Immaculada</au><au>Yousef, Ibraheem</au><au>György, Enikö</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of the supercapacitive properties of laser deposited graphene-based electrodes through carbon nanotube loading and nitrogen doping</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2019</date><risdate>2019</risdate><volume>21</volume><issue>45</issue><spage>25175</spage><epage>25186</epage><pages>25175-25186</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Several technological routes are being investigated for improving the energy storage capability and power delivery of electrochemical capacitors. In this work, ternary hybrid electrodes composed of conducting graphene/reduced graphene oxide (rGO), which store charge mainly through electric double-layer mechanisms, covered by NiO nanostructures, for adding pseudocapacitance, were fabricated through a matrix assisted pulsed laser evaporation technique. The incorporation of multiwall carbon nanotubes (MWCNTs) provokes an increase of the porosity and thus, a substantial enhancement of the electrodes' capacitance (from 4 to 20 F cm −3 at 10 mV s −1 ). Volumetric capacitances of 34 F cm −3 were also obtained with electrodes containing just carbon nanotubes coated with NiO nanostructures. Moreover, the use of nitrogen containing precursors (ammonia, urea) for laser-induced N-doping of the nanocarbons also provokes a notable increase of the capacitance. Remarkably, N-containing groups in rGO-MWCNTs mainly add electric double layer charge storage, pointing to an increase of electrode porosity, whereas redox reactions contribute with a minor diffusion fraction. It was also observed that the loading of carbon nanotubes leads to an increase of diffusion-controlled charge storage mechanisms versus capacitive ones in rGO-based electrodes, the opposite effect being observed in graphene electrodes. Laser-deposited graphene-based electrodes for supercapacitors show significant improvement of capacitance after loading with carbon nanotubes and nitrogen doping. Several electrochemical mechanisms act in the charge storage process.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9cp04237g</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9792-6675</orcidid><orcidid>https://orcid.org/0000-0001-7818-8611</orcidid><orcidid>https://orcid.org/0000-0001-6311-5823</orcidid><orcidid>https://orcid.org/0000-0002-1405-6027</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2019, Vol.21 (45), p.25175-25186
issn 1463-9076
1463-9084
language eng
recordid cdi_rsc_primary_c9cp04237g
source Royal Society of Chemistry
subjects Ammonia
Capacitance
Carbon
Coated electrodes
Doping
Electric charge
Electric double layer
Electrodes
Energy storage
Graphene
Laser deposition
Lasers
Multi wall carbon nanotubes
Nanostructure
Nickel oxides
Nitrogen
Porosity
Pulsed lasers
Redox reactions
title Enhancement of the supercapacitive properties of laser deposited graphene-based electrodes through carbon nanotube loading and nitrogen doping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20the%20supercapacitive%20properties%20of%20laser%20deposited%20graphene-based%20electrodes%20through%20carbon%20nanotube%20loading%20and%20nitrogen%20doping&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=P%C3%A9rez%20del%20Pino,%20%C3%81ngel&rft.date=2019&rft.volume=21&rft.issue=45&rft.spage=25175&rft.epage=25186&rft.pages=25175-25186&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp04237g&rft_dat=%3Cproquest_rsc_p%3E2315934200%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-9d161f05d96fcb54a4d68ba1cbc581288e2bb25ef790f664636a07067a68e8f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2315934200&rft_id=info:pmid/&rfr_iscdi=true