Loading…
Enhancement of the supercapacitive properties of laser deposited graphene-based electrodes through carbon nanotube loading and nitrogen doping
Several technological routes are being investigated for improving the energy storage capability and power delivery of electrochemical capacitors. In this work, ternary hybrid electrodes composed of conducting graphene/reduced graphene oxide (rGO), which store charge mainly through electric double-la...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2019, Vol.21 (45), p.25175-25186 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c413t-9d161f05d96fcb54a4d68ba1cbc581288e2bb25ef790f664636a07067a68e8f03 |
---|---|
cites | cdi_FETCH-LOGICAL-c413t-9d161f05d96fcb54a4d68ba1cbc581288e2bb25ef790f664636a07067a68e8f03 |
container_end_page | 25186 |
container_issue | 45 |
container_start_page | 25175 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 21 |
creator | Pérez del Pino, Ángel Rodríguez López, Marta Ramadan, Mohamed Ahmed García Lebière, Pablo Logofatu, Constantin Martínez-Rovira, Immaculada Yousef, Ibraheem György, Enikö |
description | Several technological routes are being investigated for improving the energy storage capability and power delivery of electrochemical capacitors. In this work, ternary hybrid electrodes composed of conducting graphene/reduced graphene oxide (rGO), which store charge mainly through electric double-layer mechanisms, covered by NiO nanostructures, for adding pseudocapacitance, were fabricated through a matrix assisted pulsed laser evaporation technique. The incorporation of multiwall carbon nanotubes (MWCNTs) provokes an increase of the porosity and thus, a substantial enhancement of the electrodes' capacitance (from 4 to 20 F cm
−3
at 10 mV s
−1
). Volumetric capacitances of 34 F cm
−3
were also obtained with electrodes containing just carbon nanotubes coated with NiO nanostructures. Moreover, the use of nitrogen containing precursors (ammonia, urea) for laser-induced N-doping of the nanocarbons also provokes a notable increase of the capacitance. Remarkably, N-containing groups in rGO-MWCNTs mainly add electric double layer charge storage, pointing to an increase of electrode porosity, whereas redox reactions contribute with a minor diffusion fraction. It was also observed that the loading of carbon nanotubes leads to an increase of diffusion-controlled charge storage mechanisms
versus
capacitive ones in rGO-based electrodes, the opposite effect being observed in graphene electrodes.
Laser-deposited graphene-based electrodes for supercapacitors show significant improvement of capacitance after loading with carbon nanotubes and nitrogen doping. Several electrochemical mechanisms act in the charge storage process. |
doi_str_mv | 10.1039/c9cp04237g |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9cp04237g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315934200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-9d161f05d96fcb54a4d68ba1cbc581288e2bb25ef790f664636a07067a68e8f03</originalsourceid><addsrcrecordid>eNp90ctKxTAQBuAiCl437oWIGxGqSdOmzVIO3kDQha5LmkzaSk8Sk1TwJXxmczyi4MJVhpmPIcOfZYcEnxNM-YXk0uGyoHW_ke2QktGc46bc_Klrtp3thvCCMSYVoTvZx5UZhJGwBBOR1SgOgMLswEvhhBzj-AbIeZsacYSwEpMI4JECZ8MYQaHeCzeAgbxLA4VgAhm9VQnHwdu5H5AUvrMGGWFsnDtAkxVqND0SRiEzJtyDQcq61NvPtrSYAhx8v3vZ8_XV0-I2v3-4uVtc3ueyJDTmXBFGNK4UZ1p2VSlKxZpOENnJqiFF00DRdUUFuuZYM5ZuZwLXmNWCNdBoTPey0_XedNvrDCG2yzFImCZhwM6hLSgpqqrknCd68oe-2Nmb9LuVqjgtC7xaeLZW0tsQPOjW-XEp_HtLcLuKpl3wxeNXNDcJH62xD_LH_UaX5sf_zVunNP0EtlmZRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315934200</pqid></control><display><type>article</type><title>Enhancement of the supercapacitive properties of laser deposited graphene-based electrodes through carbon nanotube loading and nitrogen doping</title><source>Royal Society of Chemistry</source><creator>Pérez del Pino, Ángel ; Rodríguez López, Marta ; Ramadan, Mohamed Ahmed ; García Lebière, Pablo ; Logofatu, Constantin ; Martínez-Rovira, Immaculada ; Yousef, Ibraheem ; György, Enikö</creator><creatorcontrib>Pérez del Pino, Ángel ; Rodríguez López, Marta ; Ramadan, Mohamed Ahmed ; García Lebière, Pablo ; Logofatu, Constantin ; Martínez-Rovira, Immaculada ; Yousef, Ibraheem ; György, Enikö</creatorcontrib><description>Several technological routes are being investigated for improving the energy storage capability and power delivery of electrochemical capacitors. In this work, ternary hybrid electrodes composed of conducting graphene/reduced graphene oxide (rGO), which store charge mainly through electric double-layer mechanisms, covered by NiO nanostructures, for adding pseudocapacitance, were fabricated through a matrix assisted pulsed laser evaporation technique. The incorporation of multiwall carbon nanotubes (MWCNTs) provokes an increase of the porosity and thus, a substantial enhancement of the electrodes' capacitance (from 4 to 20 F cm
−3
at 10 mV s
−1
). Volumetric capacitances of 34 F cm
−3
were also obtained with electrodes containing just carbon nanotubes coated with NiO nanostructures. Moreover, the use of nitrogen containing precursors (ammonia, urea) for laser-induced N-doping of the nanocarbons also provokes a notable increase of the capacitance. Remarkably, N-containing groups in rGO-MWCNTs mainly add electric double layer charge storage, pointing to an increase of electrode porosity, whereas redox reactions contribute with a minor diffusion fraction. It was also observed that the loading of carbon nanotubes leads to an increase of diffusion-controlled charge storage mechanisms
versus
capacitive ones in rGO-based electrodes, the opposite effect being observed in graphene electrodes.
Laser-deposited graphene-based electrodes for supercapacitors show significant improvement of capacitance after loading with carbon nanotubes and nitrogen doping. Several electrochemical mechanisms act in the charge storage process.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp04237g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ammonia ; Capacitance ; Carbon ; Coated electrodes ; Doping ; Electric charge ; Electric double layer ; Electrodes ; Energy storage ; Graphene ; Laser deposition ; Lasers ; Multi wall carbon nanotubes ; Nanostructure ; Nickel oxides ; Nitrogen ; Porosity ; Pulsed lasers ; Redox reactions</subject><ispartof>Physical chemistry chemical physics : PCCP, 2019, Vol.21 (45), p.25175-25186</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-9d161f05d96fcb54a4d68ba1cbc581288e2bb25ef790f664636a07067a68e8f03</citedby><cites>FETCH-LOGICAL-c413t-9d161f05d96fcb54a4d68ba1cbc581288e2bb25ef790f664636a07067a68e8f03</cites><orcidid>0000-0001-9792-6675 ; 0000-0001-7818-8611 ; 0000-0001-6311-5823 ; 0000-0002-1405-6027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Pérez del Pino, Ángel</creatorcontrib><creatorcontrib>Rodríguez López, Marta</creatorcontrib><creatorcontrib>Ramadan, Mohamed Ahmed</creatorcontrib><creatorcontrib>García Lebière, Pablo</creatorcontrib><creatorcontrib>Logofatu, Constantin</creatorcontrib><creatorcontrib>Martínez-Rovira, Immaculada</creatorcontrib><creatorcontrib>Yousef, Ibraheem</creatorcontrib><creatorcontrib>György, Enikö</creatorcontrib><title>Enhancement of the supercapacitive properties of laser deposited graphene-based electrodes through carbon nanotube loading and nitrogen doping</title><title>Physical chemistry chemical physics : PCCP</title><description>Several technological routes are being investigated for improving the energy storage capability and power delivery of electrochemical capacitors. In this work, ternary hybrid electrodes composed of conducting graphene/reduced graphene oxide (rGO), which store charge mainly through electric double-layer mechanisms, covered by NiO nanostructures, for adding pseudocapacitance, were fabricated through a matrix assisted pulsed laser evaporation technique. The incorporation of multiwall carbon nanotubes (MWCNTs) provokes an increase of the porosity and thus, a substantial enhancement of the electrodes' capacitance (from 4 to 20 F cm
−3
at 10 mV s
−1
). Volumetric capacitances of 34 F cm
−3
were also obtained with electrodes containing just carbon nanotubes coated with NiO nanostructures. Moreover, the use of nitrogen containing precursors (ammonia, urea) for laser-induced N-doping of the nanocarbons also provokes a notable increase of the capacitance. Remarkably, N-containing groups in rGO-MWCNTs mainly add electric double layer charge storage, pointing to an increase of electrode porosity, whereas redox reactions contribute with a minor diffusion fraction. It was also observed that the loading of carbon nanotubes leads to an increase of diffusion-controlled charge storage mechanisms
versus
capacitive ones in rGO-based electrodes, the opposite effect being observed in graphene electrodes.
Laser-deposited graphene-based electrodes for supercapacitors show significant improvement of capacitance after loading with carbon nanotubes and nitrogen doping. Several electrochemical mechanisms act in the charge storage process.</description><subject>Ammonia</subject><subject>Capacitance</subject><subject>Carbon</subject><subject>Coated electrodes</subject><subject>Doping</subject><subject>Electric charge</subject><subject>Electric double layer</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>Laser deposition</subject><subject>Lasers</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanostructure</subject><subject>Nickel oxides</subject><subject>Nitrogen</subject><subject>Porosity</subject><subject>Pulsed lasers</subject><subject>Redox reactions</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90ctKxTAQBuAiCl437oWIGxGqSdOmzVIO3kDQha5LmkzaSk8Sk1TwJXxmczyi4MJVhpmPIcOfZYcEnxNM-YXk0uGyoHW_ke2QktGc46bc_Klrtp3thvCCMSYVoTvZx5UZhJGwBBOR1SgOgMLswEvhhBzj-AbIeZsacYSwEpMI4JECZ8MYQaHeCzeAgbxLA4VgAhm9VQnHwdu5H5AUvrMGGWFsnDtAkxVqND0SRiEzJtyDQcq61NvPtrSYAhx8v3vZ8_XV0-I2v3-4uVtc3ueyJDTmXBFGNK4UZ1p2VSlKxZpOENnJqiFF00DRdUUFuuZYM5ZuZwLXmNWCNdBoTPey0_XedNvrDCG2yzFImCZhwM6hLSgpqqrknCd68oe-2Nmb9LuVqjgtC7xaeLZW0tsQPOjW-XEp_HtLcLuKpl3wxeNXNDcJH62xD_LH_UaX5sf_zVunNP0EtlmZRA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Pérez del Pino, Ángel</creator><creator>Rodríguez López, Marta</creator><creator>Ramadan, Mohamed Ahmed</creator><creator>García Lebière, Pablo</creator><creator>Logofatu, Constantin</creator><creator>Martínez-Rovira, Immaculada</creator><creator>Yousef, Ibraheem</creator><creator>György, Enikö</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9792-6675</orcidid><orcidid>https://orcid.org/0000-0001-7818-8611</orcidid><orcidid>https://orcid.org/0000-0001-6311-5823</orcidid><orcidid>https://orcid.org/0000-0002-1405-6027</orcidid></search><sort><creationdate>2019</creationdate><title>Enhancement of the supercapacitive properties of laser deposited graphene-based electrodes through carbon nanotube loading and nitrogen doping</title><author>Pérez del Pino, Ángel ; Rodríguez López, Marta ; Ramadan, Mohamed Ahmed ; García Lebière, Pablo ; Logofatu, Constantin ; Martínez-Rovira, Immaculada ; Yousef, Ibraheem ; György, Enikö</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-9d161f05d96fcb54a4d68ba1cbc581288e2bb25ef790f664636a07067a68e8f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ammonia</topic><topic>Capacitance</topic><topic>Carbon</topic><topic>Coated electrodes</topic><topic>Doping</topic><topic>Electric charge</topic><topic>Electric double layer</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>Laser deposition</topic><topic>Lasers</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanostructure</topic><topic>Nickel oxides</topic><topic>Nitrogen</topic><topic>Porosity</topic><topic>Pulsed lasers</topic><topic>Redox reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez del Pino, Ángel</creatorcontrib><creatorcontrib>Rodríguez López, Marta</creatorcontrib><creatorcontrib>Ramadan, Mohamed Ahmed</creatorcontrib><creatorcontrib>García Lebière, Pablo</creatorcontrib><creatorcontrib>Logofatu, Constantin</creatorcontrib><creatorcontrib>Martínez-Rovira, Immaculada</creatorcontrib><creatorcontrib>Yousef, Ibraheem</creatorcontrib><creatorcontrib>György, Enikö</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez del Pino, Ángel</au><au>Rodríguez López, Marta</au><au>Ramadan, Mohamed Ahmed</au><au>García Lebière, Pablo</au><au>Logofatu, Constantin</au><au>Martínez-Rovira, Immaculada</au><au>Yousef, Ibraheem</au><au>György, Enikö</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of the supercapacitive properties of laser deposited graphene-based electrodes through carbon nanotube loading and nitrogen doping</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2019</date><risdate>2019</risdate><volume>21</volume><issue>45</issue><spage>25175</spage><epage>25186</epage><pages>25175-25186</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Several technological routes are being investigated for improving the energy storage capability and power delivery of electrochemical capacitors. In this work, ternary hybrid electrodes composed of conducting graphene/reduced graphene oxide (rGO), which store charge mainly through electric double-layer mechanisms, covered by NiO nanostructures, for adding pseudocapacitance, were fabricated through a matrix assisted pulsed laser evaporation technique. The incorporation of multiwall carbon nanotubes (MWCNTs) provokes an increase of the porosity and thus, a substantial enhancement of the electrodes' capacitance (from 4 to 20 F cm
−3
at 10 mV s
−1
). Volumetric capacitances of 34 F cm
−3
were also obtained with electrodes containing just carbon nanotubes coated with NiO nanostructures. Moreover, the use of nitrogen containing precursors (ammonia, urea) for laser-induced N-doping of the nanocarbons also provokes a notable increase of the capacitance. Remarkably, N-containing groups in rGO-MWCNTs mainly add electric double layer charge storage, pointing to an increase of electrode porosity, whereas redox reactions contribute with a minor diffusion fraction. It was also observed that the loading of carbon nanotubes leads to an increase of diffusion-controlled charge storage mechanisms
versus
capacitive ones in rGO-based electrodes, the opposite effect being observed in graphene electrodes.
Laser-deposited graphene-based electrodes for supercapacitors show significant improvement of capacitance after loading with carbon nanotubes and nitrogen doping. Several electrochemical mechanisms act in the charge storage process.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9cp04237g</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9792-6675</orcidid><orcidid>https://orcid.org/0000-0001-7818-8611</orcidid><orcidid>https://orcid.org/0000-0001-6311-5823</orcidid><orcidid>https://orcid.org/0000-0002-1405-6027</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2019, Vol.21 (45), p.25175-25186 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_rsc_primary_c9cp04237g |
source | Royal Society of Chemistry |
subjects | Ammonia Capacitance Carbon Coated electrodes Doping Electric charge Electric double layer Electrodes Energy storage Graphene Laser deposition Lasers Multi wall carbon nanotubes Nanostructure Nickel oxides Nitrogen Porosity Pulsed lasers Redox reactions |
title | Enhancement of the supercapacitive properties of laser deposited graphene-based electrodes through carbon nanotube loading and nitrogen doping |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20the%20supercapacitive%20properties%20of%20laser%20deposited%20graphene-based%20electrodes%20through%20carbon%20nanotube%20loading%20and%20nitrogen%20doping&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=P%C3%A9rez%20del%20Pino,%20%C3%81ngel&rft.date=2019&rft.volume=21&rft.issue=45&rft.spage=25175&rft.epage=25186&rft.pages=25175-25186&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp04237g&rft_dat=%3Cproquest_rsc_p%3E2315934200%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-9d161f05d96fcb54a4d68ba1cbc581288e2bb25ef790f664636a07067a68e8f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2315934200&rft_id=info:pmid/&rfr_iscdi=true |