Loading…
3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity
Carbon supports used in oxygen-reduction cathode catalysts for proton exchange membrane fuel cells (PEMFCs) are vulnerable to corrosion under harsh operating conditions, leading to poor performance durability. To address this issue, we have developed highly stable porous graphitic carbon (PGC) produ...
Saved in:
Published in: | Energy & environmental science 2019-01, Vol.12 (9), p.283-2841 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Carbon supports used in oxygen-reduction cathode catalysts for proton exchange membrane fuel cells (PEMFCs) are vulnerable to corrosion under harsh operating conditions, leading to poor performance durability. To address this issue, we have developed highly stable porous graphitic carbon (PGC) produced through pyrolysis of a 3D polymer hydrogel in combination with Mn. The resulting PGC features multilayer carbon sheets assembled in porous and flower-like morphologies.
In situ
high-temperature electron microscopy was employed to dynamically monitor the carbonization process up to 1100 C, suggesting that the 3D polymer hydrogel provides high porosity at multiple scales, and that Mn catalyzes the graphitization process more effectively than other metals. Compared to conventional carbon supports such as Vulcan, Ketjenblack, and graphitized carbon, PGC provides an improved balance between high graphitization and hierarchical porosity, which is favorable for uniform Pt nanoparticle dispersion and enhanced corrosion resistance. As a result, Pt supported on PGC exhibits remarkably enhanced stability. In addition to thorough testing in aqueous electrolytes, we also conducted fuel cell testing using durability protocols recommended by the U.S. Department of Energy (DOE). After 5000 voltage cycles from 1.0 to 1.5 V, the Pt/PGC catalyst only lost 9 mV at a current density of 1.5 A cm
2
, dramatically exceeding the DOE support durability target ( |
---|---|
ISSN: | 1754-5692 1754-5706 |
DOI: | 10.1039/c9ee01899a |