Loading…
Elucidating the structural properties of gold selenide nanostructures
Noble transition metal chalcogenide gold selenide is a relatively unexplored layered material. Herein, we report on the synthesis and characterization of polymorphic mixed-valence AuSe (Au 1+ Au 3+ Se 2 ) by varying the sequence of the addition of the precursors in a colloidal synthesis. Despite the...
Saved in:
Published in: | New journal of chemistry 2019-04, Vol.43 (15), p.5773-5782 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c307t-3326e561f1ad3a7448e751c42ef82699d75a83c490f75bb319950142f9035e733 |
---|---|
cites | cdi_FETCH-LOGICAL-c307t-3326e561f1ad3a7448e751c42ef82699d75a83c490f75bb319950142f9035e733 |
container_end_page | 5782 |
container_issue | 15 |
container_start_page | 5773 |
container_title | New journal of chemistry |
container_volume | 43 |
creator | Machogo, Lerato F. E Mthimunye, Musa Sithole, Rudo K Tetyana, Phumlani Phao, Neo Ngubeni, Grace N Mlambo, Mbuso Mduli, Phumlane S Shumbula, Poslet M Moloto, Nosipho |
description | Noble transition metal chalcogenide gold selenide is a relatively unexplored layered material. Herein, we report on the synthesis and characterization of polymorphic mixed-valence AuSe (Au
1+
Au
3+
Se
2
) by varying the sequence of the addition of the precursors in a colloidal synthesis. Despite the variations, all produced materials showed the co-existence of α- and β-AuSe. Although both polymorphs were observed, XRD showed that the addition of the gold precursor at higher temperatures resulted in α-AuSe being the dominant phase while the addition at lower temperatures resulted in β-AuSe being preferred. The crystal structures of both α- and β-AuSe consist of repeating units of a linearly bonded Au
1+
ion to two Se atoms and a Au
3+
ion bonded to four Se atoms in a square planar geometry. The Au4f core level spectrum of XPS showed only the Au
+1
oxidation state, however, using the Se3d core level spectrum, the formation of AuSe (Au
1+
Au
3+
Se
2
) was evident. Using DFT calculations, the Raman spectra of α- and β-AuSe were simulated and only the square planar geometry was found to be Raman active. The square planar geometry (Au
3+
Se
4
)
−
ions belonging to the
D
4h
point group produced three Raman active vibrational modes, namely, a symmetric stretch (A
1g
), a planar bend (B
1g
) and an asymmetric stretch (B
2g
) for α-AuSe as well as A
1g
and B
1g
for β-AuSe. Experimentally, all samples showed Raman vibrational lines from both phases. Moreover, Raman spectroscopy confirmed the presence of Au
3+
in AuSe which was not detected using XPS. From the TEM and SEM results, it was evident that the morphologies of the predominantly α-AuSe samples were nanobelts while the predominantly β-AuSe samples showed plate-like structures. The predominantly α-AuSe samples showed a broad absorption band with a maximum at 853 nm while the predominantly β-AuSe samples showed evidence of absorption however with no defined excitonic peak.
Noble transition metal chalcogenide gold selenide is a relatively unexplored layered material. |
doi_str_mv | 10.1039/c9nj00142e |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9nj00142e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2204972609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-3326e561f1ad3a7448e751c42ef82699d75a83c490f75bb319950142f9035e733</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqVw4Y4UxA0p4LfrI6rCSxVc4Gy5zrqkCkmwnQP_vi7lceO0K82n3ZlB6JTgK4KZvna6W2NMOIU9NCFM6lJTSfbzTjgvseDyEB3FuGWIkmSCqqodXVPb1HSrIr1BEVMYXRqDbYsh9AOE1EAsel-s-rYuIrTQNTUUne36HxTiMTrwto1w8j2n6PW2epnfl4vnu4f5zaJ0DKtUMkYlCEk8sTWzivMZKEFcdutnVGpdK2FnzHGNvRLLJSNai20YrzEToBiboovd3WztY4SYzLofQ5dfGkox14pKrDN1uaNc6GMM4M0QmncbPg3BZluTmeunx6-aqgyf7eAQ3S_3V2PWz__TzVB7tgG6vm7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2204972609</pqid></control><display><type>article</type><title>Elucidating the structural properties of gold selenide nanostructures</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Machogo, Lerato F. E ; Mthimunye, Musa ; Sithole, Rudo K ; Tetyana, Phumlani ; Phao, Neo ; Ngubeni, Grace N ; Mlambo, Mbuso ; Mduli, Phumlane S ; Shumbula, Poslet M ; Moloto, Nosipho</creator><creatorcontrib>Machogo, Lerato F. E ; Mthimunye, Musa ; Sithole, Rudo K ; Tetyana, Phumlani ; Phao, Neo ; Ngubeni, Grace N ; Mlambo, Mbuso ; Mduli, Phumlane S ; Shumbula, Poslet M ; Moloto, Nosipho</creatorcontrib><description>Noble transition metal chalcogenide gold selenide is a relatively unexplored layered material. Herein, we report on the synthesis and characterization of polymorphic mixed-valence AuSe (Au
1+
Au
3+
Se
2
) by varying the sequence of the addition of the precursors in a colloidal synthesis. Despite the variations, all produced materials showed the co-existence of α- and β-AuSe. Although both polymorphs were observed, XRD showed that the addition of the gold precursor at higher temperatures resulted in α-AuSe being the dominant phase while the addition at lower temperatures resulted in β-AuSe being preferred. The crystal structures of both α- and β-AuSe consist of repeating units of a linearly bonded Au
1+
ion to two Se atoms and a Au
3+
ion bonded to four Se atoms in a square planar geometry. The Au4f core level spectrum of XPS showed only the Au
+1
oxidation state, however, using the Se3d core level spectrum, the formation of AuSe (Au
1+
Au
3+
Se
2
) was evident. Using DFT calculations, the Raman spectra of α- and β-AuSe were simulated and only the square planar geometry was found to be Raman active. The square planar geometry (Au
3+
Se
4
)
−
ions belonging to the
D
4h
point group produced three Raman active vibrational modes, namely, a symmetric stretch (A
1g
), a planar bend (B
1g
) and an asymmetric stretch (B
2g
) for α-AuSe as well as A
1g
and B
1g
for β-AuSe. Experimentally, all samples showed Raman vibrational lines from both phases. Moreover, Raman spectroscopy confirmed the presence of Au
3+
in AuSe which was not detected using XPS. From the TEM and SEM results, it was evident that the morphologies of the predominantly α-AuSe samples were nanobelts while the predominantly β-AuSe samples showed plate-like structures. The predominantly α-AuSe samples showed a broad absorption band with a maximum at 853 nm while the predominantly β-AuSe samples showed evidence of absorption however with no defined excitonic peak.
Noble transition metal chalcogenide gold selenide is a relatively unexplored layered material.</description><identifier>ISSN: 1144-0546</identifier><identifier>EISSN: 1369-9261</identifier><identifier>DOI: 10.1039/c9nj00142e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption spectra ; Chemical bonds ; Crystal structure ; Geometry ; Gold ; Mathematical morphology ; Oxidation ; Plates (structural members) ; Precursors ; Raman spectra ; Raman spectroscopy ; Selenium ; Spectrum analysis ; Synthesis ; Transition metal compounds ; Valence ; X ray photoelectron spectroscopy</subject><ispartof>New journal of chemistry, 2019-04, Vol.43 (15), p.5773-5782</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-3326e561f1ad3a7448e751c42ef82699d75a83c490f75bb319950142f9035e733</citedby><cites>FETCH-LOGICAL-c307t-3326e561f1ad3a7448e751c42ef82699d75a83c490f75bb319950142f9035e733</cites><orcidid>0000-0003-4436-0932 ; 0000-0002-3976-6674 ; 0000-0002-1554-783X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Machogo, Lerato F. E</creatorcontrib><creatorcontrib>Mthimunye, Musa</creatorcontrib><creatorcontrib>Sithole, Rudo K</creatorcontrib><creatorcontrib>Tetyana, Phumlani</creatorcontrib><creatorcontrib>Phao, Neo</creatorcontrib><creatorcontrib>Ngubeni, Grace N</creatorcontrib><creatorcontrib>Mlambo, Mbuso</creatorcontrib><creatorcontrib>Mduli, Phumlane S</creatorcontrib><creatorcontrib>Shumbula, Poslet M</creatorcontrib><creatorcontrib>Moloto, Nosipho</creatorcontrib><title>Elucidating the structural properties of gold selenide nanostructures</title><title>New journal of chemistry</title><description>Noble transition metal chalcogenide gold selenide is a relatively unexplored layered material. Herein, we report on the synthesis and characterization of polymorphic mixed-valence AuSe (Au
1+
Au
3+
Se
2
) by varying the sequence of the addition of the precursors in a colloidal synthesis. Despite the variations, all produced materials showed the co-existence of α- and β-AuSe. Although both polymorphs were observed, XRD showed that the addition of the gold precursor at higher temperatures resulted in α-AuSe being the dominant phase while the addition at lower temperatures resulted in β-AuSe being preferred. The crystal structures of both α- and β-AuSe consist of repeating units of a linearly bonded Au
1+
ion to two Se atoms and a Au
3+
ion bonded to four Se atoms in a square planar geometry. The Au4f core level spectrum of XPS showed only the Au
+1
oxidation state, however, using the Se3d core level spectrum, the formation of AuSe (Au
1+
Au
3+
Se
2
) was evident. Using DFT calculations, the Raman spectra of α- and β-AuSe were simulated and only the square planar geometry was found to be Raman active. The square planar geometry (Au
3+
Se
4
)
−
ions belonging to the
D
4h
point group produced three Raman active vibrational modes, namely, a symmetric stretch (A
1g
), a planar bend (B
1g
) and an asymmetric stretch (B
2g
) for α-AuSe as well as A
1g
and B
1g
for β-AuSe. Experimentally, all samples showed Raman vibrational lines from both phases. Moreover, Raman spectroscopy confirmed the presence of Au
3+
in AuSe which was not detected using XPS. From the TEM and SEM results, it was evident that the morphologies of the predominantly α-AuSe samples were nanobelts while the predominantly β-AuSe samples showed plate-like structures. The predominantly α-AuSe samples showed a broad absorption band with a maximum at 853 nm while the predominantly β-AuSe samples showed evidence of absorption however with no defined excitonic peak.
Noble transition metal chalcogenide gold selenide is a relatively unexplored layered material.</description><subject>Absorption spectra</subject><subject>Chemical bonds</subject><subject>Crystal structure</subject><subject>Geometry</subject><subject>Gold</subject><subject>Mathematical morphology</subject><subject>Oxidation</subject><subject>Plates (structural members)</subject><subject>Precursors</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Selenium</subject><subject>Spectrum analysis</subject><subject>Synthesis</subject><subject>Transition metal compounds</subject><subject>Valence</subject><subject>X ray photoelectron spectroscopy</subject><issn>1144-0546</issn><issn>1369-9261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqVw4Y4UxA0p4LfrI6rCSxVc4Gy5zrqkCkmwnQP_vi7lceO0K82n3ZlB6JTgK4KZvna6W2NMOIU9NCFM6lJTSfbzTjgvseDyEB3FuGWIkmSCqqodXVPb1HSrIr1BEVMYXRqDbYsh9AOE1EAsel-s-rYuIrTQNTUUne36HxTiMTrwto1w8j2n6PW2epnfl4vnu4f5zaJ0DKtUMkYlCEk8sTWzivMZKEFcdutnVGpdK2FnzHGNvRLLJSNai20YrzEToBiboovd3WztY4SYzLofQ5dfGkox14pKrDN1uaNc6GMM4M0QmncbPg3BZluTmeunx6-aqgyf7eAQ3S_3V2PWz__TzVB7tgG6vm7s</recordid><startdate>20190408</startdate><enddate>20190408</enddate><creator>Machogo, Lerato F. E</creator><creator>Mthimunye, Musa</creator><creator>Sithole, Rudo K</creator><creator>Tetyana, Phumlani</creator><creator>Phao, Neo</creator><creator>Ngubeni, Grace N</creator><creator>Mlambo, Mbuso</creator><creator>Mduli, Phumlane S</creator><creator>Shumbula, Poslet M</creator><creator>Moloto, Nosipho</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H9R</scope><scope>JG9</scope><scope>KA0</scope><orcidid>https://orcid.org/0000-0003-4436-0932</orcidid><orcidid>https://orcid.org/0000-0002-3976-6674</orcidid><orcidid>https://orcid.org/0000-0002-1554-783X</orcidid></search><sort><creationdate>20190408</creationdate><title>Elucidating the structural properties of gold selenide nanostructures</title><author>Machogo, Lerato F. E ; Mthimunye, Musa ; Sithole, Rudo K ; Tetyana, Phumlani ; Phao, Neo ; Ngubeni, Grace N ; Mlambo, Mbuso ; Mduli, Phumlane S ; Shumbula, Poslet M ; Moloto, Nosipho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-3326e561f1ad3a7448e751c42ef82699d75a83c490f75bb319950142f9035e733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption spectra</topic><topic>Chemical bonds</topic><topic>Crystal structure</topic><topic>Geometry</topic><topic>Gold</topic><topic>Mathematical morphology</topic><topic>Oxidation</topic><topic>Plates (structural members)</topic><topic>Precursors</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Selenium</topic><topic>Spectrum analysis</topic><topic>Synthesis</topic><topic>Transition metal compounds</topic><topic>Valence</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machogo, Lerato F. E</creatorcontrib><creatorcontrib>Mthimunye, Musa</creatorcontrib><creatorcontrib>Sithole, Rudo K</creatorcontrib><creatorcontrib>Tetyana, Phumlani</creatorcontrib><creatorcontrib>Phao, Neo</creatorcontrib><creatorcontrib>Ngubeni, Grace N</creatorcontrib><creatorcontrib>Mlambo, Mbuso</creatorcontrib><creatorcontrib>Mduli, Phumlane S</creatorcontrib><creatorcontrib>Shumbula, Poslet M</creatorcontrib><creatorcontrib>Moloto, Nosipho</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Illustrata: Natural Sciences</collection><collection>Materials Research Database</collection><collection>ProQuest Illustrata: Technology Collection</collection><jtitle>New journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machogo, Lerato F. E</au><au>Mthimunye, Musa</au><au>Sithole, Rudo K</au><au>Tetyana, Phumlani</au><au>Phao, Neo</au><au>Ngubeni, Grace N</au><au>Mlambo, Mbuso</au><au>Mduli, Phumlane S</au><au>Shumbula, Poslet M</au><au>Moloto, Nosipho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating the structural properties of gold selenide nanostructures</atitle><jtitle>New journal of chemistry</jtitle><date>2019-04-08</date><risdate>2019</risdate><volume>43</volume><issue>15</issue><spage>5773</spage><epage>5782</epage><pages>5773-5782</pages><issn>1144-0546</issn><eissn>1369-9261</eissn><abstract>Noble transition metal chalcogenide gold selenide is a relatively unexplored layered material. Herein, we report on the synthesis and characterization of polymorphic mixed-valence AuSe (Au
1+
Au
3+
Se
2
) by varying the sequence of the addition of the precursors in a colloidal synthesis. Despite the variations, all produced materials showed the co-existence of α- and β-AuSe. Although both polymorphs were observed, XRD showed that the addition of the gold precursor at higher temperatures resulted in α-AuSe being the dominant phase while the addition at lower temperatures resulted in β-AuSe being preferred. The crystal structures of both α- and β-AuSe consist of repeating units of a linearly bonded Au
1+
ion to two Se atoms and a Au
3+
ion bonded to four Se atoms in a square planar geometry. The Au4f core level spectrum of XPS showed only the Au
+1
oxidation state, however, using the Se3d core level spectrum, the formation of AuSe (Au
1+
Au
3+
Se
2
) was evident. Using DFT calculations, the Raman spectra of α- and β-AuSe were simulated and only the square planar geometry was found to be Raman active. The square planar geometry (Au
3+
Se
4
)
−
ions belonging to the
D
4h
point group produced three Raman active vibrational modes, namely, a symmetric stretch (A
1g
), a planar bend (B
1g
) and an asymmetric stretch (B
2g
) for α-AuSe as well as A
1g
and B
1g
for β-AuSe. Experimentally, all samples showed Raman vibrational lines from both phases. Moreover, Raman spectroscopy confirmed the presence of Au
3+
in AuSe which was not detected using XPS. From the TEM and SEM results, it was evident that the morphologies of the predominantly α-AuSe samples were nanobelts while the predominantly β-AuSe samples showed plate-like structures. The predominantly α-AuSe samples showed a broad absorption band with a maximum at 853 nm while the predominantly β-AuSe samples showed evidence of absorption however with no defined excitonic peak.
Noble transition metal chalcogenide gold selenide is a relatively unexplored layered material.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9nj00142e</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4436-0932</orcidid><orcidid>https://orcid.org/0000-0002-3976-6674</orcidid><orcidid>https://orcid.org/0000-0002-1554-783X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1144-0546 |
ispartof | New journal of chemistry, 2019-04, Vol.43 (15), p.5773-5782 |
issn | 1144-0546 1369-9261 |
language | eng |
recordid | cdi_rsc_primary_c9nj00142e |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Absorption spectra Chemical bonds Crystal structure Geometry Gold Mathematical morphology Oxidation Plates (structural members) Precursors Raman spectra Raman spectroscopy Selenium Spectrum analysis Synthesis Transition metal compounds Valence X ray photoelectron spectroscopy |
title | Elucidating the structural properties of gold selenide nanostructures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A56%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20the%20structural%20properties%20of%20gold%20selenide%20nanostructures&rft.jtitle=New%20journal%20of%20chemistry&rft.au=Machogo,%20Lerato%20F.%20E&rft.date=2019-04-08&rft.volume=43&rft.issue=15&rft.spage=5773&rft.epage=5782&rft.pages=5773-5782&rft.issn=1144-0546&rft.eissn=1369-9261&rft_id=info:doi/10.1039/c9nj00142e&rft_dat=%3Cproquest_rsc_p%3E2204972609%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-3326e561f1ad3a7448e751c42ef82699d75a83c490f75bb319950142f9035e733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2204972609&rft_id=info:pmid/&rfr_iscdi=true |