Loading…
Flexible all-in-one zinc-ion batteries
The recent development of flexible and wearable electronic devices has increased the demand for energy storage devices with excellent flexibility and structural stability. Aqueous zinc-ion batteries (ZIBs) are promising energy storage devices due to their low cost, high safety, and eco-friendliness....
Saved in:
Published in: | Nanoscale 2019-10, Vol.11 (38), p.1763-17636 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The recent development of flexible and wearable electronic devices has increased the demand for energy storage devices with excellent flexibility and structural stability. Aqueous zinc-ion batteries (ZIBs) are promising energy storage devices due to their low cost, high safety, and eco-friendliness. Therefore, flexible ZIBs have to be considered. Herein, we design the flexible all-in-one ZIBs, where the reduced graphene oxide/polyaniline (rGO/PANI) cathode, cellulose nanofiber (CNF) separator, and exfoliated graphene (EG)/Zn anode are integrated together using an all-freeze-casting strategy. The continuous seamless connection of such all-in-one ZIBs can avoid displacing and detaching between the electrodes and separator under different bending states and improve the load-transfer capacity and interface strength between the neighboring component layers. As a result, the all-in-one ZIBs show excellent flexibility and superior electrochemical stability under different bending states.
Flexible all-in-one ZIBs exhibit excellent physical flexibility and stable electrochemical performance under different mechanical deformations. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c9nr06476a |