Loading…
Thermally driven interfacial diffusion synthesis of nitrogen-doped carbon confined trimetallic PtCoRu composites for the methanol oxidation reaction
A current challenge to direct methanol fuel cells (DMFCs) is the insufficient electrocatalytic activity and anti-CO poisoning ability of Pt-based alloy catalysts toward the methanol oxidation reaction (MOR). In this work, a simple thermally driven interfacial diffusion alloying method is adopted to...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019-07, Vol.7 (3), p.18143-18149 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A current challenge to direct methanol fuel cells (DMFCs) is the insufficient electrocatalytic activity and anti-CO poisoning ability of Pt-based alloy catalysts toward the methanol oxidation reaction (MOR). In this work, a simple thermally driven interfacial diffusion alloying method is adopted to synthesize Pt
3
CoRu/C@NC trimetallic nanoparticles (NPs) with enhanced MOR activity and anti-CO poisoning ability. The MOR mass activity of the Pt
3
CoRu/C@NC catalyst (0.97 mA μg
Pt
−1
) is 4.2 times larger than that of the commercial Pt/C catalyst (0.23 mA μg
Pt
−1
). Moreover, the Pt
3
CoRu/C@NC catalyst exhibits a much lower CO oxidation onset potential than the commercial Pt/C catalyst (0.35 V
vs.
0.82 V), which directly indicates the improved anti-CO poisoning ability of the catalyst. This enhancement in MOR activity as well as anti-CO poisoning ability of the Pt
3
CoRu/C@NC catalyst is mainly attributed to the synergistic effect of Ru (as a water activator) and Co (as an electronic modifier). Indeed, this work not only provides a satisfactory strategy for improving the activity and anti-CO poisoning ability of MOR electrocatalysts but also gives a significant insight into simple and cost-effective alloying methods for developing homogeneous trimetallic alloy catalysts.
A thermally driven interfacial diffusion strategy was employed to fabricate a trimetallic Pt
3
CoRu/C@NC catalyst with excellent enhancement towards the MOR in terms of superior stability and anti-CO poisoning. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/c9ta04412d |