Loading…

Intrinsic insight on localized surface plasmon resonance enhanced methanol electro-oxidation over a Au@AgPt hollow urchin-like nanostructure

The plasmon effect on the catalytic performance of metal nanoparticles (NPs) has shown great potential for the design of novel catalytic reactions. However, the intrinsic mechanisms underlying the catalysis triggered by localized surface plasmon resonance (LSPR) are still ambiguous. In this work, we...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-04, Vol.8 (14), p.6638-6646
Main Authors: Bi, Jinglei, Gao, Pengfei, Wang, Bin, Yu, Xiaojing, Kong, Chuncai, Xu, Liang, Zhang, Xiaojing, Yang, Shengchun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-88cd5dbb315a65d9bcd89982e190136fab14d71082e44ffb378a3cd38c6b0f1f3
cites cdi_FETCH-LOGICAL-c385t-88cd5dbb315a65d9bcd89982e190136fab14d71082e44ffb378a3cd38c6b0f1f3
container_end_page 6646
container_issue 14
container_start_page 6638
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 8
creator Bi, Jinglei
Gao, Pengfei
Wang, Bin
Yu, Xiaojing
Kong, Chuncai
Xu, Liang
Zhang, Xiaojing
Yang, Shengchun
description The plasmon effect on the catalytic performance of metal nanoparticles (NPs) has shown great potential for the design of novel catalytic reactions. However, the intrinsic mechanisms underlying the catalysis triggered by localized surface plasmon resonance (LSPR) are still ambiguous. In this work, we construct Au@AgPt hollow urchin-like structures (Au@AgPt HUSs) with an ultra-thin Pt shell for the electrocatalytic methanol oxidation reaction (MOR) in an alkaline solution under irradiation (200 mW cm m −2 ). A superior MOR mass activity (3.26 A mg −1 Pt) is achieved on Au@AgPt HUSs, which is 5.43 times that of commercial Pt black catalysts (0.6 A mg −1 Pt) under irradiation. It is also reported that localized heating, which results from the photothermal effect under irradiation, can accelerate the reaction kinetics of MOR over Au@AgPt HUSs. Theoretical calculations demonstrate that the reduced lowest unoccupied molecular orbital (LUMO) energy level of CO induced by the localized electric field can accelerate the rate-determining step *CO to *COOH, and the energetic hot carriers provide energy to promote the transfer of *CO from the hollow Pt site to the top Pt site. Thus, the hollow Pt active sites poisoned by *CO can be reactivated due to the *CO transfer mechanism, leading to more available active sites for the MOR process. This work reveals the intrinsic effect of LSPR on catalysis and paves the way to boost conventional catalytic reactions by introducing solar energy flux. The plasmon effect on the catalytic performance of metal nanoparticles (NPs) has shown great potential for the design of novel catalytic reactions.
doi_str_mv 10.1039/c9ta13567g
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9ta13567g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2386938459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-88cd5dbb315a65d9bcd89982e190136fab14d71082e44ffb378a3cd38c6b0f1f3</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhhdRsNRevAsRb8Jq0uxHcrMUrYWCHup5yeajm5pu1iTr12_wR5taqTfnMDPM-_AOzCTJKYJXCGJ6zWlgCOdFuTpIBmOYw7TMaHG47wk5Tkber2EMAmFB6SD5mrfB6dZrDrZ51QRgW2AsZ0Z_SgF87xTjEnSG-U1UnPS2ZW2cyLbZVgE2MsTOGiCN5MHZ1L5rwYKOtH2VDjAw6W8mq8cAGmuMfQO9441uU6OfJYhe1gfX89A7eZIcKWa8HP3WYfJ0d7uc3qeLh9l8OlmkHJM8pIRwkYu6xihnRS5ozQWhlIwlohDhQrEaZaJEME6yTKkal4RhLjDhRQ0VUniYXOx8O2dfeulDtba9a-PKaoxJQTHJchqpyx3FnfXeSVV1Tm-Y-6gQrLYHr6Z0Ofk5-CzCZzvYeb7n_h4S9fP_9KoTCn8D4n-MCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386938459</pqid></control><display><type>article</type><title>Intrinsic insight on localized surface plasmon resonance enhanced methanol electro-oxidation over a Au@AgPt hollow urchin-like nanostructure</title><source>Royal Society of Chemistry</source><creator>Bi, Jinglei ; Gao, Pengfei ; Wang, Bin ; Yu, Xiaojing ; Kong, Chuncai ; Xu, Liang ; Zhang, Xiaojing ; Yang, Shengchun</creator><creatorcontrib>Bi, Jinglei ; Gao, Pengfei ; Wang, Bin ; Yu, Xiaojing ; Kong, Chuncai ; Xu, Liang ; Zhang, Xiaojing ; Yang, Shengchun</creatorcontrib><description>The plasmon effect on the catalytic performance of metal nanoparticles (NPs) has shown great potential for the design of novel catalytic reactions. However, the intrinsic mechanisms underlying the catalysis triggered by localized surface plasmon resonance (LSPR) are still ambiguous. In this work, we construct Au@AgPt hollow urchin-like structures (Au@AgPt HUSs) with an ultra-thin Pt shell for the electrocatalytic methanol oxidation reaction (MOR) in an alkaline solution under irradiation (200 mW cm m −2 ). A superior MOR mass activity (3.26 A mg −1 Pt) is achieved on Au@AgPt HUSs, which is 5.43 times that of commercial Pt black catalysts (0.6 A mg −1 Pt) under irradiation. It is also reported that localized heating, which results from the photothermal effect under irradiation, can accelerate the reaction kinetics of MOR over Au@AgPt HUSs. Theoretical calculations demonstrate that the reduced lowest unoccupied molecular orbital (LUMO) energy level of CO induced by the localized electric field can accelerate the rate-determining step *CO to *COOH, and the energetic hot carriers provide energy to promote the transfer of *CO from the hollow Pt site to the top Pt site. Thus, the hollow Pt active sites poisoned by *CO can be reactivated due to the *CO transfer mechanism, leading to more available active sites for the MOR process. This work reveals the intrinsic effect of LSPR on catalysis and paves the way to boost conventional catalytic reactions by introducing solar energy flux. The plasmon effect on the catalytic performance of metal nanoparticles (NPs) has shown great potential for the design of novel catalytic reactions.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta13567g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon monoxide ; Catalysis ; Catalysts ; Electric fields ; Energy ; Energy levels ; Gold ; Irradiation ; Mapping ; Mathematical analysis ; Methanol ; Molecular orbitals ; Nanoparticles ; Oxidation ; Platinum ; Radiation ; Reaction kinetics ; Resonance ; Solar energy ; Surface plasmon resonance</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-04, Vol.8 (14), p.6638-6646</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-88cd5dbb315a65d9bcd89982e190136fab14d71082e44ffb378a3cd38c6b0f1f3</citedby><cites>FETCH-LOGICAL-c385t-88cd5dbb315a65d9bcd89982e190136fab14d71082e44ffb378a3cd38c6b0f1f3</cites><orcidid>0000-0002-7835-1666 ; 0000-0002-7144-4501 ; 0000-0003-1547-798X ; 0000-0002-4149-6263</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Bi, Jinglei</creatorcontrib><creatorcontrib>Gao, Pengfei</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Yu, Xiaojing</creatorcontrib><creatorcontrib>Kong, Chuncai</creatorcontrib><creatorcontrib>Xu, Liang</creatorcontrib><creatorcontrib>Zhang, Xiaojing</creatorcontrib><creatorcontrib>Yang, Shengchun</creatorcontrib><title>Intrinsic insight on localized surface plasmon resonance enhanced methanol electro-oxidation over a Au@AgPt hollow urchin-like nanostructure</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The plasmon effect on the catalytic performance of metal nanoparticles (NPs) has shown great potential for the design of novel catalytic reactions. However, the intrinsic mechanisms underlying the catalysis triggered by localized surface plasmon resonance (LSPR) are still ambiguous. In this work, we construct Au@AgPt hollow urchin-like structures (Au@AgPt HUSs) with an ultra-thin Pt shell for the electrocatalytic methanol oxidation reaction (MOR) in an alkaline solution under irradiation (200 mW cm m −2 ). A superior MOR mass activity (3.26 A mg −1 Pt) is achieved on Au@AgPt HUSs, which is 5.43 times that of commercial Pt black catalysts (0.6 A mg −1 Pt) under irradiation. It is also reported that localized heating, which results from the photothermal effect under irradiation, can accelerate the reaction kinetics of MOR over Au@AgPt HUSs. Theoretical calculations demonstrate that the reduced lowest unoccupied molecular orbital (LUMO) energy level of CO induced by the localized electric field can accelerate the rate-determining step *CO to *COOH, and the energetic hot carriers provide energy to promote the transfer of *CO from the hollow Pt site to the top Pt site. Thus, the hollow Pt active sites poisoned by *CO can be reactivated due to the *CO transfer mechanism, leading to more available active sites for the MOR process. This work reveals the intrinsic effect of LSPR on catalysis and paves the way to boost conventional catalytic reactions by introducing solar energy flux. The plasmon effect on the catalytic performance of metal nanoparticles (NPs) has shown great potential for the design of novel catalytic reactions.</description><subject>Carbon monoxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Electric fields</subject><subject>Energy</subject><subject>Energy levels</subject><subject>Gold</subject><subject>Irradiation</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Methanol</subject><subject>Molecular orbitals</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Platinum</subject><subject>Radiation</subject><subject>Reaction kinetics</subject><subject>Resonance</subject><subject>Solar energy</subject><subject>Surface plasmon resonance</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LAzEQhhdRsNRevAsRb8Jq0uxHcrMUrYWCHup5yeajm5pu1iTr12_wR5taqTfnMDPM-_AOzCTJKYJXCGJ6zWlgCOdFuTpIBmOYw7TMaHG47wk5Tkber2EMAmFB6SD5mrfB6dZrDrZ51QRgW2AsZ0Z_SgF87xTjEnSG-U1UnPS2ZW2cyLbZVgE2MsTOGiCN5MHZ1L5rwYKOtH2VDjAw6W8mq8cAGmuMfQO9441uU6OfJYhe1gfX89A7eZIcKWa8HP3WYfJ0d7uc3qeLh9l8OlmkHJM8pIRwkYu6xihnRS5ozQWhlIwlohDhQrEaZaJEME6yTKkal4RhLjDhRQ0VUniYXOx8O2dfeulDtba9a-PKaoxJQTHJchqpyx3FnfXeSVV1Tm-Y-6gQrLYHr6Z0Ofk5-CzCZzvYeb7n_h4S9fP_9KoTCn8D4n-MCg</recordid><startdate>20200414</startdate><enddate>20200414</enddate><creator>Bi, Jinglei</creator><creator>Gao, Pengfei</creator><creator>Wang, Bin</creator><creator>Yu, Xiaojing</creator><creator>Kong, Chuncai</creator><creator>Xu, Liang</creator><creator>Zhang, Xiaojing</creator><creator>Yang, Shengchun</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7835-1666</orcidid><orcidid>https://orcid.org/0000-0002-7144-4501</orcidid><orcidid>https://orcid.org/0000-0003-1547-798X</orcidid><orcidid>https://orcid.org/0000-0002-4149-6263</orcidid></search><sort><creationdate>20200414</creationdate><title>Intrinsic insight on localized surface plasmon resonance enhanced methanol electro-oxidation over a Au@AgPt hollow urchin-like nanostructure</title><author>Bi, Jinglei ; Gao, Pengfei ; Wang, Bin ; Yu, Xiaojing ; Kong, Chuncai ; Xu, Liang ; Zhang, Xiaojing ; Yang, Shengchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-88cd5dbb315a65d9bcd89982e190136fab14d71082e44ffb378a3cd38c6b0f1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon monoxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Electric fields</topic><topic>Energy</topic><topic>Energy levels</topic><topic>Gold</topic><topic>Irradiation</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Methanol</topic><topic>Molecular orbitals</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Platinum</topic><topic>Radiation</topic><topic>Reaction kinetics</topic><topic>Resonance</topic><topic>Solar energy</topic><topic>Surface plasmon resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Jinglei</creatorcontrib><creatorcontrib>Gao, Pengfei</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Yu, Xiaojing</creatorcontrib><creatorcontrib>Kong, Chuncai</creatorcontrib><creatorcontrib>Xu, Liang</creatorcontrib><creatorcontrib>Zhang, Xiaojing</creatorcontrib><creatorcontrib>Yang, Shengchun</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bi, Jinglei</au><au>Gao, Pengfei</au><au>Wang, Bin</au><au>Yu, Xiaojing</au><au>Kong, Chuncai</au><au>Xu, Liang</au><au>Zhang, Xiaojing</au><au>Yang, Shengchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic insight on localized surface plasmon resonance enhanced methanol electro-oxidation over a Au@AgPt hollow urchin-like nanostructure</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-04-14</date><risdate>2020</risdate><volume>8</volume><issue>14</issue><spage>6638</spage><epage>6646</epage><pages>6638-6646</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The plasmon effect on the catalytic performance of metal nanoparticles (NPs) has shown great potential for the design of novel catalytic reactions. However, the intrinsic mechanisms underlying the catalysis triggered by localized surface plasmon resonance (LSPR) are still ambiguous. In this work, we construct Au@AgPt hollow urchin-like structures (Au@AgPt HUSs) with an ultra-thin Pt shell for the electrocatalytic methanol oxidation reaction (MOR) in an alkaline solution under irradiation (200 mW cm m −2 ). A superior MOR mass activity (3.26 A mg −1 Pt) is achieved on Au@AgPt HUSs, which is 5.43 times that of commercial Pt black catalysts (0.6 A mg −1 Pt) under irradiation. It is also reported that localized heating, which results from the photothermal effect under irradiation, can accelerate the reaction kinetics of MOR over Au@AgPt HUSs. Theoretical calculations demonstrate that the reduced lowest unoccupied molecular orbital (LUMO) energy level of CO induced by the localized electric field can accelerate the rate-determining step *CO to *COOH, and the energetic hot carriers provide energy to promote the transfer of *CO from the hollow Pt site to the top Pt site. Thus, the hollow Pt active sites poisoned by *CO can be reactivated due to the *CO transfer mechanism, leading to more available active sites for the MOR process. This work reveals the intrinsic effect of LSPR on catalysis and paves the way to boost conventional catalytic reactions by introducing solar energy flux. The plasmon effect on the catalytic performance of metal nanoparticles (NPs) has shown great potential for the design of novel catalytic reactions.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ta13567g</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7835-1666</orcidid><orcidid>https://orcid.org/0000-0002-7144-4501</orcidid><orcidid>https://orcid.org/0000-0003-1547-798X</orcidid><orcidid>https://orcid.org/0000-0002-4149-6263</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2020-04, Vol.8 (14), p.6638-6646
issn 2050-7488
2050-7496
language eng
recordid cdi_rsc_primary_c9ta13567g
source Royal Society of Chemistry
subjects Carbon monoxide
Catalysis
Catalysts
Electric fields
Energy
Energy levels
Gold
Irradiation
Mapping
Mathematical analysis
Methanol
Molecular orbitals
Nanoparticles
Oxidation
Platinum
Radiation
Reaction kinetics
Resonance
Solar energy
Surface plasmon resonance
title Intrinsic insight on localized surface plasmon resonance enhanced methanol electro-oxidation over a Au@AgPt hollow urchin-like nanostructure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20insight%20on%20localized%20surface%20plasmon%20resonance%20enhanced%20methanol%20electro-oxidation%20over%20a%20Au@AgPt%20hollow%20urchin-like%20nanostructure&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Bi,%20Jinglei&rft.date=2020-04-14&rft.volume=8&rft.issue=14&rft.spage=6638&rft.epage=6646&rft.pages=6638-6646&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta13567g&rft_dat=%3Cproquest_rsc_p%3E2386938459%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-88cd5dbb315a65d9bcd89982e190136fab14d71082e44ffb378a3cd38c6b0f1f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2386938459&rft_id=info:pmid/&rfr_iscdi=true