Loading…
Superior energy density through tailored dopant strategies in multilayer ceramic capacitors
The Gerson-Marshall (1959) relationship predicts an increase in dielectric breakdown strength (BDS) and therefore, recoverable energy density ( W rec ) with decreasing dielectric layer thickness. This relationship only operates however, if the total resistivity of the dielectric is sufficiently high...
Saved in:
Published in: | Energy & environmental science 2020-09, Vol.13 (9), p.2938-2948 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Gerson-Marshall (1959) relationship predicts an increase in dielectric breakdown strength (BDS) and therefore, recoverable energy density (
W
rec
) with decreasing dielectric layer thickness. This relationship only operates however, if the total resistivity of the dielectric is sufficiently high and the electrical microstructure is homogeneous (no short circuit diffusion paths). BiFeO
3
-SrTiO
3
(BF-ST) is a promising base for developing high energy density capacitors but Bi-rich compositions which have the highest polarisability per unit volume are ferroelectric rather than relaxor and are electrically too conductive. Here, we present a systematic strategy to optimise BDS and maximum polarisation
via
: (i) Nb-doping to increase resistivity by eliminating hole conduction and promoting electrical homogeneity and (ii) alloying with a third perovskite end-member, BiMg
2/3
Nb
1/3
O
3
(BMN), to reduce long range polar coupling without decreasing the average ionic polarisability. These strategies result in an increase in BDS to give
W
rec
= 8.2 J cm
−3
at 460 kV cm
−1
for BF-ST-0.03Nb-0.1BMN ceramics, which when incorporated in a multilayer capacitor with dielectric layers of 8 μm thickness gives BDS > 1000 kV cm
−1
and
W
rec
= 15.8 J cm
−3
.
Tailored dopant strategies are proposed to optimise the energy density of BiFeO
3
-SrTiO
3
, which can be adapted for other high polarisability oxide-based systems. |
---|---|
ISSN: | 1754-5692 1754-5706 |
DOI: | 10.1039/d0ee02104k |