Loading…

On the improvement of properties of bioplastic composites derived from wasted cottonseed protein by rational cross-linking and natural fiber reinforcement

An approach of largely improving the properties of protein-based biopolymers is reported. Cottonseed protein concentrate (CPC) purified from cottonseed protein powder waste, with a protein content of >70% and a plasticizing efficiency of 4.2, was used to produce bioplastic polymer. A prepreg cons...

Full description

Saved in:
Bibliographic Details
Published in:Green chemistry : an international journal and green chemistry resource : GC 2020-12, Vol.22 (24), p.8642-8655
Main Authors: Yue, Hangbo, Zheng, Yuru, Zheng, Pingxuan, Guo, Jianwei, Fernández-Blázquez, Juan P, Clark, James H, Cui, Yingde
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c318t-375edb1a37ca467f2a714dacfe19eb15434d7733fe3d7f612a20e86b706602803
cites cdi_FETCH-LOGICAL-c318t-375edb1a37ca467f2a714dacfe19eb15434d7733fe3d7f612a20e86b706602803
container_end_page 8655
container_issue 24
container_start_page 8642
container_title Green chemistry : an international journal and green chemistry resource : GC
container_volume 22
creator Yue, Hangbo
Zheng, Yuru
Zheng, Pingxuan
Guo, Jianwei
Fernández-Blázquez, Juan P
Clark, James H
Cui, Yingde
description An approach of largely improving the properties of protein-based biopolymers is reported. Cottonseed protein concentrate (CPC) purified from cottonseed protein powder waste, with a protein content of >70% and a plasticizing efficiency of 4.2, was used to produce bioplastic polymer. A prepreg consisting of relatively oriented sisal fiber (SF) was transferred into CPC matrix as reinforcement, giving rise to improved mechanical properties of CPC/SF composites. To enhance interfacial bonding forces between the fiber and polymer, dialdehyde starch, DAS, with varied content (5-30 wt%) was introduced, and the FTIR and NMR results showed that DAS can effectively bridge biomacromolecular chains and form strong chemical bonds within the crosslinked structure. This cross-linking treatment leads to the formation of tight CPC/SF interfaces with strong adhesion, as shown by microscopic images, translating into excellent mechanical performance ( e.g. tensile strength 21 MPa), water resistance ( e.g. water contact angle 80°) and thermal stability ( e.g. glass transition temperature 104 °C) of the composites. The all green composites derived from natural resources with comparable or even superior properties to state-of-the-art biomass-based composites hold great potential for being utilized in larger industries. Biocomposites made entirely by renewable biomass demonstrate excellent mechanical, hydrophobic and thermal properties thanks to rational cross-linking and fiber reinforcement.
doi_str_mv 10.1039/d0gc03245j
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d0gc03245j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2469742911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-375edb1a37ca467f2a714dacfe19eb15434d7733fe3d7f612a20e86b706602803</originalsourceid><addsrcrecordid>eNpFkU1LAzEQhhdRUKsX70LAm7Carybdo9RvCl70vGSzE03dTdYkrfSv-GtNW6mneYf3meHNpCjOCL4imFXXLX7XmFE-nu8VR4QLVlZU4v2dFvSwOI5xjjEhUvCj4ufFofQByPZD8EvowSXkDcrNACFZiOuusX7oVExWI-37wUebstFCsEtokQm-R9_Zzlr7lLyLkGVekcA61KxQUMl6pzqkg4-x7Kz7tO4dKdcip9IiZMfYBgIKecD4oDc5TooDo7oIp391VLzd371OH8vZy8PT9GZWakYmqWRyDG1DFJNacSENVZLwVmkDpIKGjDnjrZSMGWCtNIJQRTFMRCOxEJhOMBsVF9u9OfHXAmKq534RctxYUy4qyWlFSKYut9TmDQFMPQTbq7CqCa7Xt69v8cN0c_vnDJ9v4RD1jvv_G_YLMseEsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469742911</pqid></control><display><type>article</type><title>On the improvement of properties of bioplastic composites derived from wasted cottonseed protein by rational cross-linking and natural fiber reinforcement</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Yue, Hangbo ; Zheng, Yuru ; Zheng, Pingxuan ; Guo, Jianwei ; Fernández-Blázquez, Juan P ; Clark, James H ; Cui, Yingde</creator><creatorcontrib>Yue, Hangbo ; Zheng, Yuru ; Zheng, Pingxuan ; Guo, Jianwei ; Fernández-Blázquez, Juan P ; Clark, James H ; Cui, Yingde</creatorcontrib><description>An approach of largely improving the properties of protein-based biopolymers is reported. Cottonseed protein concentrate (CPC) purified from cottonseed protein powder waste, with a protein content of &gt;70% and a plasticizing efficiency of 4.2, was used to produce bioplastic polymer. A prepreg consisting of relatively oriented sisal fiber (SF) was transferred into CPC matrix as reinforcement, giving rise to improved mechanical properties of CPC/SF composites. To enhance interfacial bonding forces between the fiber and polymer, dialdehyde starch, DAS, with varied content (5-30 wt%) was introduced, and the FTIR and NMR results showed that DAS can effectively bridge biomacromolecular chains and form strong chemical bonds within the crosslinked structure. This cross-linking treatment leads to the formation of tight CPC/SF interfaces with strong adhesion, as shown by microscopic images, translating into excellent mechanical performance ( e.g. tensile strength 21 MPa), water resistance ( e.g. water contact angle 80°) and thermal stability ( e.g. glass transition temperature 104 °C) of the composites. The all green composites derived from natural resources with comparable or even superior properties to state-of-the-art biomass-based composites hold great potential for being utilized in larger industries. Biocomposites made entirely by renewable biomass demonstrate excellent mechanical, hydrophobic and thermal properties thanks to rational cross-linking and fiber reinforcement.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/d0gc03245j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adhesive strength ; Biopolymers ; Bonding strength ; Chemical bonds ; Composite materials ; Contact angle ; Crosslinking ; Fiber reinforcement ; Glass transition temperature ; Green chemistry ; Hydrophobicity ; Interfaces ; Interfacial bonding ; Mechanical properties ; Natural resources ; NMR ; Nuclear magnetic resonance ; Polymer matrix composites ; Polymers ; Proteins ; Raw materials ; Sisal ; Starch ; Tensile strength ; Thermal stability ; Transition temperatures ; Water resistance</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2020-12, Vol.22 (24), p.8642-8655</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-375edb1a37ca467f2a714dacfe19eb15434d7733fe3d7f612a20e86b706602803</citedby><cites>FETCH-LOGICAL-c318t-375edb1a37ca467f2a714dacfe19eb15434d7733fe3d7f612a20e86b706602803</cites><orcidid>0000-0002-5860-2480 ; 0000-0003-0458-3293 ; 0000-0003-2557-1427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yue, Hangbo</creatorcontrib><creatorcontrib>Zheng, Yuru</creatorcontrib><creatorcontrib>Zheng, Pingxuan</creatorcontrib><creatorcontrib>Guo, Jianwei</creatorcontrib><creatorcontrib>Fernández-Blázquez, Juan P</creatorcontrib><creatorcontrib>Clark, James H</creatorcontrib><creatorcontrib>Cui, Yingde</creatorcontrib><title>On the improvement of properties of bioplastic composites derived from wasted cottonseed protein by rational cross-linking and natural fiber reinforcement</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>An approach of largely improving the properties of protein-based biopolymers is reported. Cottonseed protein concentrate (CPC) purified from cottonseed protein powder waste, with a protein content of &gt;70% and a plasticizing efficiency of 4.2, was used to produce bioplastic polymer. A prepreg consisting of relatively oriented sisal fiber (SF) was transferred into CPC matrix as reinforcement, giving rise to improved mechanical properties of CPC/SF composites. To enhance interfacial bonding forces between the fiber and polymer, dialdehyde starch, DAS, with varied content (5-30 wt%) was introduced, and the FTIR and NMR results showed that DAS can effectively bridge biomacromolecular chains and form strong chemical bonds within the crosslinked structure. This cross-linking treatment leads to the formation of tight CPC/SF interfaces with strong adhesion, as shown by microscopic images, translating into excellent mechanical performance ( e.g. tensile strength 21 MPa), water resistance ( e.g. water contact angle 80°) and thermal stability ( e.g. glass transition temperature 104 °C) of the composites. The all green composites derived from natural resources with comparable or even superior properties to state-of-the-art biomass-based composites hold great potential for being utilized in larger industries. Biocomposites made entirely by renewable biomass demonstrate excellent mechanical, hydrophobic and thermal properties thanks to rational cross-linking and fiber reinforcement.</description><subject>Adhesive strength</subject><subject>Biopolymers</subject><subject>Bonding strength</subject><subject>Chemical bonds</subject><subject>Composite materials</subject><subject>Contact angle</subject><subject>Crosslinking</subject><subject>Fiber reinforcement</subject><subject>Glass transition temperature</subject><subject>Green chemistry</subject><subject>Hydrophobicity</subject><subject>Interfaces</subject><subject>Interfacial bonding</subject><subject>Mechanical properties</subject><subject>Natural resources</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Proteins</subject><subject>Raw materials</subject><subject>Sisal</subject><subject>Starch</subject><subject>Tensile strength</subject><subject>Thermal stability</subject><subject>Transition temperatures</subject><subject>Water resistance</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkU1LAzEQhhdRUKsX70LAm7Carybdo9RvCl70vGSzE03dTdYkrfSv-GtNW6mneYf3meHNpCjOCL4imFXXLX7XmFE-nu8VR4QLVlZU4v2dFvSwOI5xjjEhUvCj4ufFofQByPZD8EvowSXkDcrNACFZiOuusX7oVExWI-37wUebstFCsEtokQm-R9_Zzlr7lLyLkGVekcA61KxQUMl6pzqkg4-x7Kz7tO4dKdcip9IiZMfYBgIKecD4oDc5TooDo7oIp391VLzd371OH8vZy8PT9GZWakYmqWRyDG1DFJNacSENVZLwVmkDpIKGjDnjrZSMGWCtNIJQRTFMRCOxEJhOMBsVF9u9OfHXAmKq534RctxYUy4qyWlFSKYut9TmDQFMPQTbq7CqCa7Xt69v8cN0c_vnDJ9v4RD1jvv_G_YLMseEsg</recordid><startdate>20201221</startdate><enddate>20201221</enddate><creator>Yue, Hangbo</creator><creator>Zheng, Yuru</creator><creator>Zheng, Pingxuan</creator><creator>Guo, Jianwei</creator><creator>Fernández-Blázquez, Juan P</creator><creator>Clark, James H</creator><creator>Cui, Yingde</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-5860-2480</orcidid><orcidid>https://orcid.org/0000-0003-0458-3293</orcidid><orcidid>https://orcid.org/0000-0003-2557-1427</orcidid></search><sort><creationdate>20201221</creationdate><title>On the improvement of properties of bioplastic composites derived from wasted cottonseed protein by rational cross-linking and natural fiber reinforcement</title><author>Yue, Hangbo ; Zheng, Yuru ; Zheng, Pingxuan ; Guo, Jianwei ; Fernández-Blázquez, Juan P ; Clark, James H ; Cui, Yingde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-375edb1a37ca467f2a714dacfe19eb15434d7733fe3d7f612a20e86b706602803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adhesive strength</topic><topic>Biopolymers</topic><topic>Bonding strength</topic><topic>Chemical bonds</topic><topic>Composite materials</topic><topic>Contact angle</topic><topic>Crosslinking</topic><topic>Fiber reinforcement</topic><topic>Glass transition temperature</topic><topic>Green chemistry</topic><topic>Hydrophobicity</topic><topic>Interfaces</topic><topic>Interfacial bonding</topic><topic>Mechanical properties</topic><topic>Natural resources</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Proteins</topic><topic>Raw materials</topic><topic>Sisal</topic><topic>Starch</topic><topic>Tensile strength</topic><topic>Thermal stability</topic><topic>Transition temperatures</topic><topic>Water resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yue, Hangbo</creatorcontrib><creatorcontrib>Zheng, Yuru</creatorcontrib><creatorcontrib>Zheng, Pingxuan</creatorcontrib><creatorcontrib>Guo, Jianwei</creatorcontrib><creatorcontrib>Fernández-Blázquez, Juan P</creatorcontrib><creatorcontrib>Clark, James H</creatorcontrib><creatorcontrib>Cui, Yingde</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yue, Hangbo</au><au>Zheng, Yuru</au><au>Zheng, Pingxuan</au><au>Guo, Jianwei</au><au>Fernández-Blázquez, Juan P</au><au>Clark, James H</au><au>Cui, Yingde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the improvement of properties of bioplastic composites derived from wasted cottonseed protein by rational cross-linking and natural fiber reinforcement</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2020-12-21</date><risdate>2020</risdate><volume>22</volume><issue>24</issue><spage>8642</spage><epage>8655</epage><pages>8642-8655</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>An approach of largely improving the properties of protein-based biopolymers is reported. Cottonseed protein concentrate (CPC) purified from cottonseed protein powder waste, with a protein content of &gt;70% and a plasticizing efficiency of 4.2, was used to produce bioplastic polymer. A prepreg consisting of relatively oriented sisal fiber (SF) was transferred into CPC matrix as reinforcement, giving rise to improved mechanical properties of CPC/SF composites. To enhance interfacial bonding forces between the fiber and polymer, dialdehyde starch, DAS, with varied content (5-30 wt%) was introduced, and the FTIR and NMR results showed that DAS can effectively bridge biomacromolecular chains and form strong chemical bonds within the crosslinked structure. This cross-linking treatment leads to the formation of tight CPC/SF interfaces with strong adhesion, as shown by microscopic images, translating into excellent mechanical performance ( e.g. tensile strength 21 MPa), water resistance ( e.g. water contact angle 80°) and thermal stability ( e.g. glass transition temperature 104 °C) of the composites. The all green composites derived from natural resources with comparable or even superior properties to state-of-the-art biomass-based composites hold great potential for being utilized in larger industries. Biocomposites made entirely by renewable biomass demonstrate excellent mechanical, hydrophobic and thermal properties thanks to rational cross-linking and fiber reinforcement.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0gc03245j</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5860-2480</orcidid><orcidid>https://orcid.org/0000-0003-0458-3293</orcidid><orcidid>https://orcid.org/0000-0003-2557-1427</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9262
ispartof Green chemistry : an international journal and green chemistry resource : GC, 2020-12, Vol.22 (24), p.8642-8655
issn 1463-9262
1463-9270
language eng
recordid cdi_rsc_primary_d0gc03245j
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Adhesive strength
Biopolymers
Bonding strength
Chemical bonds
Composite materials
Contact angle
Crosslinking
Fiber reinforcement
Glass transition temperature
Green chemistry
Hydrophobicity
Interfaces
Interfacial bonding
Mechanical properties
Natural resources
NMR
Nuclear magnetic resonance
Polymer matrix composites
Polymers
Proteins
Raw materials
Sisal
Starch
Tensile strength
Thermal stability
Transition temperatures
Water resistance
title On the improvement of properties of bioplastic composites derived from wasted cottonseed protein by rational cross-linking and natural fiber reinforcement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A53%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20improvement%20of%20properties%20of%20bioplastic%20composites%20derived%20from%20wasted%20cottonseed%20protein%20by%20rational%20cross-linking%20and%20natural%20fiber%20reinforcement&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Yue,%20Hangbo&rft.date=2020-12-21&rft.volume=22&rft.issue=24&rft.spage=8642&rft.epage=8655&rft.pages=8642-8655&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/d0gc03245j&rft_dat=%3Cproquest_rsc_p%3E2469742911%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-375edb1a37ca467f2a714dacfe19eb15434d7733fe3d7f612a20e86b706602803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2469742911&rft_id=info:pmid/&rfr_iscdi=true