Loading…

Picoliter agar droplet breakup in microfluidics meets microbiology application: numerical and experimental approaches

Droplet microfluidics has provided lab-on-a-chip platforms with the capability of bacteria encapsulation in biomaterials, controlled culture environments, and live monitoring of growth and proliferation. The droplets are mainly generated from biomaterials with temperature dependent gelation behavior...

Full description

Saved in:
Bibliographic Details
Published in:Lab on a chip 2020-06, Vol.2 (12), p.2175-2187
Main Authors: Khater, Asmaa, Abdelrehim, Osama, Mohammadi, Mehdi, Azarmanesh, Milad, Janmaleki, Mohsen, Salahandish, Razieh, Mohamad, Abdulmajeed, Sanati-Nezhad, Amir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-e4a70a77093e7b08415f44cab16f92c6622a83f5e348caeabfe3e0ae1c0975ec3
cites cdi_FETCH-LOGICAL-c400t-e4a70a77093e7b08415f44cab16f92c6622a83f5e348caeabfe3e0ae1c0975ec3
container_end_page 2187
container_issue 12
container_start_page 2175
container_title Lab on a chip
container_volume 2
creator Khater, Asmaa
Abdelrehim, Osama
Mohammadi, Mehdi
Azarmanesh, Milad
Janmaleki, Mohsen
Salahandish, Razieh
Mohamad, Abdulmajeed
Sanati-Nezhad, Amir
description Droplet microfluidics has provided lab-on-a-chip platforms with the capability of bacteria encapsulation in biomaterials, controlled culture environments, and live monitoring of growth and proliferation. The droplets are mainly generated from biomaterials with temperature dependent gelation behavior which necessitates stable and size-controlled droplet formation within microfluidics. Here, the biomaterial is agar hydrogel with a non-Newtonian response at operating temperatures below 40 °C, the upper-temperature threshold for cells and pathogens. The size of the produced droplets and the formation regimes are examined when the agar is injected at a constant temperature of 37 °C with agar concentrations of 0.5%, 1%, and 2% and different flow rate ratios of the dispersed phase to the continuous phase ( : 0.1 to 1). The numerical simulations show that and the capillary number (Ca) are the key parameters controlling the agar droplet size and formation regime, from dripping to jetting. Also, increasing the agar concentration produces smaller droplets. The simulation data were validated against experimental agar droplet generation and transport in microfluidics. This work helps to understand the physics of droplet generation in droplet microfluidic systems operating with non-Newtonian fluids. Pathogenic bacteria were successfully cultured and monitored in high resolution in agar droplets for further research in antibiotic susceptibility testing in bacteremia and urinary tract infection. Droplet microfluidics has provided lab-on-a-chip platforms with the capability of bacteria encapsulation in biomaterials, controlled culture environments, and live monitoring of growth and proliferation.
doi_str_mv 10.1039/d0lc00300j
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d0lc00300j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404384098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-e4a70a77093e7b08415f44cab16f92c6622a83f5e348caeabfe3e0ae1c0975ec3</originalsourceid><addsrcrecordid>eNp9kctv1DAQxi1URNuFC3cqV71USAvj2Hn1hrYtD60EBzhHE2fSeuvErp1I9L_HZZet1AOneXw_zXj8MfZWwAcBsv7YgdUAEmDzgh0JVcoliKo-2Od1eciOY9wAiFwV1St2KDOVQV7CEZt_GO2smShwvMHAu-C8pYm3gfBu9tyMfDA6uN7OpjM68oFoittea5x1Nw8cvbdG42TceMHHeaCQKstx7Dj99qkaaJweG94Hh_qW4mv2skcb6c0uLtiv66ufqy_L9ffPX1ef1kutAKYlKSwByxJqSWULlRJ5r5TGVhR9nemiyDKsZJ-TVJVGwrYnSYAkNNRlTlou2Pl2blp8P1OcmsFETdbiSG6OTaZAyUpBXSX07Bm6cXMY0-sSJaTKVSaKRL3fUun8GAP1jU_nYXhoBDSPZjSXsF79NeNbgk92I-d2oG6P_vv9BLzbAiHqvfrkZtJP_6c3vuvlH9pvm9M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413454216</pqid></control><display><type>article</type><title>Picoliter agar droplet breakup in microfluidics meets microbiology application: numerical and experimental approaches</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Khater, Asmaa ; Abdelrehim, Osama ; Mohammadi, Mehdi ; Azarmanesh, Milad ; Janmaleki, Mohsen ; Salahandish, Razieh ; Mohamad, Abdulmajeed ; Sanati-Nezhad, Amir</creator><creatorcontrib>Khater, Asmaa ; Abdelrehim, Osama ; Mohammadi, Mehdi ; Azarmanesh, Milad ; Janmaleki, Mohsen ; Salahandish, Razieh ; Mohamad, Abdulmajeed ; Sanati-Nezhad, Amir</creatorcontrib><description>Droplet microfluidics has provided lab-on-a-chip platforms with the capability of bacteria encapsulation in biomaterials, controlled culture environments, and live monitoring of growth and proliferation. The droplets are mainly generated from biomaterials with temperature dependent gelation behavior which necessitates stable and size-controlled droplet formation within microfluidics. Here, the biomaterial is agar hydrogel with a non-Newtonian response at operating temperatures below 40 °C, the upper-temperature threshold for cells and pathogens. The size of the produced droplets and the formation regimes are examined when the agar is injected at a constant temperature of 37 °C with agar concentrations of 0.5%, 1%, and 2% and different flow rate ratios of the dispersed phase to the continuous phase ( : 0.1 to 1). The numerical simulations show that and the capillary number (Ca) are the key parameters controlling the agar droplet size and formation regime, from dripping to jetting. Also, increasing the agar concentration produces smaller droplets. The simulation data were validated against experimental agar droplet generation and transport in microfluidics. This work helps to understand the physics of droplet generation in droplet microfluidic systems operating with non-Newtonian fluids. Pathogenic bacteria were successfully cultured and monitored in high resolution in agar droplets for further research in antibiotic susceptibility testing in bacteremia and urinary tract infection. Droplet microfluidics has provided lab-on-a-chip platforms with the capability of bacteria encapsulation in biomaterials, controlled culture environments, and live monitoring of growth and proliferation.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d0lc00300j</identifier><identifier>PMID: 32420570</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Agar ; Antibiotics ; Bacteria ; Biomedical materials ; Computational fluid dynamics ; Computer simulation ; Droplets ; Flow velocity ; Gelation ; Hydrogels ; Microbiology ; Microfluidics ; Newtonian fluids ; Non Newtonian fluids ; Operating temperature ; Temperature ; Temperature dependence ; Urinary tract</subject><ispartof>Lab on a chip, 2020-06, Vol.2 (12), p.2175-2187</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-e4a70a77093e7b08415f44cab16f92c6622a83f5e348caeabfe3e0ae1c0975ec3</citedby><cites>FETCH-LOGICAL-c400t-e4a70a77093e7b08415f44cab16f92c6622a83f5e348caeabfe3e0ae1c0975ec3</cites><orcidid>0000-0003-1592-9464 ; 0000-0001-8736-7259 ; 0000-0002-2309-2388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32420570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khater, Asmaa</creatorcontrib><creatorcontrib>Abdelrehim, Osama</creatorcontrib><creatorcontrib>Mohammadi, Mehdi</creatorcontrib><creatorcontrib>Azarmanesh, Milad</creatorcontrib><creatorcontrib>Janmaleki, Mohsen</creatorcontrib><creatorcontrib>Salahandish, Razieh</creatorcontrib><creatorcontrib>Mohamad, Abdulmajeed</creatorcontrib><creatorcontrib>Sanati-Nezhad, Amir</creatorcontrib><title>Picoliter agar droplet breakup in microfluidics meets microbiology application: numerical and experimental approaches</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Droplet microfluidics has provided lab-on-a-chip platforms with the capability of bacteria encapsulation in biomaterials, controlled culture environments, and live monitoring of growth and proliferation. The droplets are mainly generated from biomaterials with temperature dependent gelation behavior which necessitates stable and size-controlled droplet formation within microfluidics. Here, the biomaterial is agar hydrogel with a non-Newtonian response at operating temperatures below 40 °C, the upper-temperature threshold for cells and pathogens. The size of the produced droplets and the formation regimes are examined when the agar is injected at a constant temperature of 37 °C with agar concentrations of 0.5%, 1%, and 2% and different flow rate ratios of the dispersed phase to the continuous phase ( : 0.1 to 1). The numerical simulations show that and the capillary number (Ca) are the key parameters controlling the agar droplet size and formation regime, from dripping to jetting. Also, increasing the agar concentration produces smaller droplets. The simulation data were validated against experimental agar droplet generation and transport in microfluidics. This work helps to understand the physics of droplet generation in droplet microfluidic systems operating with non-Newtonian fluids. Pathogenic bacteria were successfully cultured and monitored in high resolution in agar droplets for further research in antibiotic susceptibility testing in bacteremia and urinary tract infection. Droplet microfluidics has provided lab-on-a-chip platforms with the capability of bacteria encapsulation in biomaterials, controlled culture environments, and live monitoring of growth and proliferation.</description><subject>Agar</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Biomedical materials</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Droplets</subject><subject>Flow velocity</subject><subject>Gelation</subject><subject>Hydrogels</subject><subject>Microbiology</subject><subject>Microfluidics</subject><subject>Newtonian fluids</subject><subject>Non Newtonian fluids</subject><subject>Operating temperature</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Urinary tract</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kctv1DAQxi1URNuFC3cqV71USAvj2Hn1hrYtD60EBzhHE2fSeuvErp1I9L_HZZet1AOneXw_zXj8MfZWwAcBsv7YgdUAEmDzgh0JVcoliKo-2Od1eciOY9wAiFwV1St2KDOVQV7CEZt_GO2smShwvMHAu-C8pYm3gfBu9tyMfDA6uN7OpjM68oFoittea5x1Nw8cvbdG42TceMHHeaCQKstx7Dj99qkaaJweG94Hh_qW4mv2skcb6c0uLtiv66ufqy_L9ffPX1ef1kutAKYlKSwByxJqSWULlRJ5r5TGVhR9nemiyDKsZJ-TVJVGwrYnSYAkNNRlTlou2Pl2blp8P1OcmsFETdbiSG6OTaZAyUpBXSX07Bm6cXMY0-sSJaTKVSaKRL3fUun8GAP1jU_nYXhoBDSPZjSXsF79NeNbgk92I-d2oG6P_vv9BLzbAiHqvfrkZtJP_6c3vuvlH9pvm9M</recordid><startdate>20200621</startdate><enddate>20200621</enddate><creator>Khater, Asmaa</creator><creator>Abdelrehim, Osama</creator><creator>Mohammadi, Mehdi</creator><creator>Azarmanesh, Milad</creator><creator>Janmaleki, Mohsen</creator><creator>Salahandish, Razieh</creator><creator>Mohamad, Abdulmajeed</creator><creator>Sanati-Nezhad, Amir</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1592-9464</orcidid><orcidid>https://orcid.org/0000-0001-8736-7259</orcidid><orcidid>https://orcid.org/0000-0002-2309-2388</orcidid></search><sort><creationdate>20200621</creationdate><title>Picoliter agar droplet breakup in microfluidics meets microbiology application: numerical and experimental approaches</title><author>Khater, Asmaa ; Abdelrehim, Osama ; Mohammadi, Mehdi ; Azarmanesh, Milad ; Janmaleki, Mohsen ; Salahandish, Razieh ; Mohamad, Abdulmajeed ; Sanati-Nezhad, Amir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-e4a70a77093e7b08415f44cab16f92c6622a83f5e348caeabfe3e0ae1c0975ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agar</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Biomedical materials</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Droplets</topic><topic>Flow velocity</topic><topic>Gelation</topic><topic>Hydrogels</topic><topic>Microbiology</topic><topic>Microfluidics</topic><topic>Newtonian fluids</topic><topic>Non Newtonian fluids</topic><topic>Operating temperature</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Urinary tract</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khater, Asmaa</creatorcontrib><creatorcontrib>Abdelrehim, Osama</creatorcontrib><creatorcontrib>Mohammadi, Mehdi</creatorcontrib><creatorcontrib>Azarmanesh, Milad</creatorcontrib><creatorcontrib>Janmaleki, Mohsen</creatorcontrib><creatorcontrib>Salahandish, Razieh</creatorcontrib><creatorcontrib>Mohamad, Abdulmajeed</creatorcontrib><creatorcontrib>Sanati-Nezhad, Amir</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khater, Asmaa</au><au>Abdelrehim, Osama</au><au>Mohammadi, Mehdi</au><au>Azarmanesh, Milad</au><au>Janmaleki, Mohsen</au><au>Salahandish, Razieh</au><au>Mohamad, Abdulmajeed</au><au>Sanati-Nezhad, Amir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Picoliter agar droplet breakup in microfluidics meets microbiology application: numerical and experimental approaches</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2020-06-21</date><risdate>2020</risdate><volume>2</volume><issue>12</issue><spage>2175</spage><epage>2187</epage><pages>2175-2187</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Droplet microfluidics has provided lab-on-a-chip platforms with the capability of bacteria encapsulation in biomaterials, controlled culture environments, and live monitoring of growth and proliferation. The droplets are mainly generated from biomaterials with temperature dependent gelation behavior which necessitates stable and size-controlled droplet formation within microfluidics. Here, the biomaterial is agar hydrogel with a non-Newtonian response at operating temperatures below 40 °C, the upper-temperature threshold for cells and pathogens. The size of the produced droplets and the formation regimes are examined when the agar is injected at a constant temperature of 37 °C with agar concentrations of 0.5%, 1%, and 2% and different flow rate ratios of the dispersed phase to the continuous phase ( : 0.1 to 1). The numerical simulations show that and the capillary number (Ca) are the key parameters controlling the agar droplet size and formation regime, from dripping to jetting. Also, increasing the agar concentration produces smaller droplets. The simulation data were validated against experimental agar droplet generation and transport in microfluidics. This work helps to understand the physics of droplet generation in droplet microfluidic systems operating with non-Newtonian fluids. Pathogenic bacteria were successfully cultured and monitored in high resolution in agar droplets for further research in antibiotic susceptibility testing in bacteremia and urinary tract infection. Droplet microfluidics has provided lab-on-a-chip platforms with the capability of bacteria encapsulation in biomaterials, controlled culture environments, and live monitoring of growth and proliferation.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32420570</pmid><doi>10.1039/d0lc00300j</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1592-9464</orcidid><orcidid>https://orcid.org/0000-0001-8736-7259</orcidid><orcidid>https://orcid.org/0000-0002-2309-2388</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2020-06, Vol.2 (12), p.2175-2187
issn 1473-0197
1473-0189
language eng
recordid cdi_rsc_primary_d0lc00300j
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Agar
Antibiotics
Bacteria
Biomedical materials
Computational fluid dynamics
Computer simulation
Droplets
Flow velocity
Gelation
Hydrogels
Microbiology
Microfluidics
Newtonian fluids
Non Newtonian fluids
Operating temperature
Temperature
Temperature dependence
Urinary tract
title Picoliter agar droplet breakup in microfluidics meets microbiology application: numerical and experimental approaches
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Picoliter%20agar%20droplet%20breakup%20in%20microfluidics%20meets%20microbiology%20application:%20numerical%20and%20experimental%20approaches&rft.jtitle=Lab%20on%20a%20chip&rft.au=Khater,%20Asmaa&rft.date=2020-06-21&rft.volume=2&rft.issue=12&rft.spage=2175&rft.epage=2187&rft.pages=2175-2187&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d0lc00300j&rft_dat=%3Cproquest_rsc_p%3E2404384098%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-e4a70a77093e7b08415f44cab16f92c6622a83f5e348caeabfe3e0ae1c0975ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2413454216&rft_id=info:pmid/32420570&rfr_iscdi=true