Loading…
Picoliter agar droplet breakup in microfluidics meets microbiology application: numerical and experimental approaches
Droplet microfluidics has provided lab-on-a-chip platforms with the capability of bacteria encapsulation in biomaterials, controlled culture environments, and live monitoring of growth and proliferation. The droplets are mainly generated from biomaterials with temperature dependent gelation behavior...
Saved in:
Published in: | Lab on a chip 2020-06, Vol.2 (12), p.2175-2187 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-e4a70a77093e7b08415f44cab16f92c6622a83f5e348caeabfe3e0ae1c0975ec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-e4a70a77093e7b08415f44cab16f92c6622a83f5e348caeabfe3e0ae1c0975ec3 |
container_end_page | 2187 |
container_issue | 12 |
container_start_page | 2175 |
container_title | Lab on a chip |
container_volume | 2 |
creator | Khater, Asmaa Abdelrehim, Osama Mohammadi, Mehdi Azarmanesh, Milad Janmaleki, Mohsen Salahandish, Razieh Mohamad, Abdulmajeed Sanati-Nezhad, Amir |
description | Droplet microfluidics has provided lab-on-a-chip platforms with the capability of bacteria encapsulation in biomaterials, controlled culture environments, and live monitoring of growth and proliferation. The droplets are mainly generated from biomaterials with temperature dependent gelation behavior which necessitates stable and size-controlled droplet formation within microfluidics. Here, the biomaterial is agar hydrogel with a non-Newtonian response at operating temperatures below 40 °C, the upper-temperature threshold for cells and pathogens. The size of the produced droplets and the formation regimes are examined when the agar is injected at a constant temperature of 37 °C with agar concentrations of 0.5%, 1%, and 2% and different flow rate ratios of the dispersed phase to the continuous phase (
: 0.1 to 1). The numerical simulations show that
and the capillary number (Ca) are the key parameters controlling the agar droplet size and formation regime, from dripping to jetting. Also, increasing the agar concentration produces smaller droplets. The simulation data were validated against experimental agar droplet generation and transport in microfluidics. This work helps to understand the physics of droplet generation in droplet microfluidic systems operating with non-Newtonian fluids. Pathogenic bacteria were successfully cultured and monitored in high resolution in agar droplets for further research in antibiotic susceptibility testing in bacteremia and urinary tract infection.
Droplet microfluidics has provided lab-on-a-chip platforms with the capability of bacteria encapsulation in biomaterials, controlled culture environments, and live monitoring of growth and proliferation. |
doi_str_mv | 10.1039/d0lc00300j |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d0lc00300j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404384098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-e4a70a77093e7b08415f44cab16f92c6622a83f5e348caeabfe3e0ae1c0975ec3</originalsourceid><addsrcrecordid>eNp9kctv1DAQxi1URNuFC3cqV71USAvj2Hn1hrYtD60EBzhHE2fSeuvErp1I9L_HZZet1AOneXw_zXj8MfZWwAcBsv7YgdUAEmDzgh0JVcoliKo-2Od1eciOY9wAiFwV1St2KDOVQV7CEZt_GO2smShwvMHAu-C8pYm3gfBu9tyMfDA6uN7OpjM68oFoittea5x1Nw8cvbdG42TceMHHeaCQKstx7Dj99qkaaJweG94Hh_qW4mv2skcb6c0uLtiv66ufqy_L9ffPX1ef1kutAKYlKSwByxJqSWULlRJ5r5TGVhR9nemiyDKsZJ-TVJVGwrYnSYAkNNRlTlou2Pl2blp8P1OcmsFETdbiSG6OTaZAyUpBXSX07Bm6cXMY0-sSJaTKVSaKRL3fUun8GAP1jU_nYXhoBDSPZjSXsF79NeNbgk92I-d2oG6P_vv9BLzbAiHqvfrkZtJP_6c3vuvlH9pvm9M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413454216</pqid></control><display><type>article</type><title>Picoliter agar droplet breakup in microfluidics meets microbiology application: numerical and experimental approaches</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Khater, Asmaa ; Abdelrehim, Osama ; Mohammadi, Mehdi ; Azarmanesh, Milad ; Janmaleki, Mohsen ; Salahandish, Razieh ; Mohamad, Abdulmajeed ; Sanati-Nezhad, Amir</creator><creatorcontrib>Khater, Asmaa ; Abdelrehim, Osama ; Mohammadi, Mehdi ; Azarmanesh, Milad ; Janmaleki, Mohsen ; Salahandish, Razieh ; Mohamad, Abdulmajeed ; Sanati-Nezhad, Amir</creatorcontrib><description>Droplet microfluidics has provided lab-on-a-chip platforms with the capability of bacteria encapsulation in biomaterials, controlled culture environments, and live monitoring of growth and proliferation. The droplets are mainly generated from biomaterials with temperature dependent gelation behavior which necessitates stable and size-controlled droplet formation within microfluidics. Here, the biomaterial is agar hydrogel with a non-Newtonian response at operating temperatures below 40 °C, the upper-temperature threshold for cells and pathogens. The size of the produced droplets and the formation regimes are examined when the agar is injected at a constant temperature of 37 °C with agar concentrations of 0.5%, 1%, and 2% and different flow rate ratios of the dispersed phase to the continuous phase (
: 0.1 to 1). The numerical simulations show that
and the capillary number (Ca) are the key parameters controlling the agar droplet size and formation regime, from dripping to jetting. Also, increasing the agar concentration produces smaller droplets. The simulation data were validated against experimental agar droplet generation and transport in microfluidics. This work helps to understand the physics of droplet generation in droplet microfluidic systems operating with non-Newtonian fluids. Pathogenic bacteria were successfully cultured and monitored in high resolution in agar droplets for further research in antibiotic susceptibility testing in bacteremia and urinary tract infection.
Droplet microfluidics has provided lab-on-a-chip platforms with the capability of bacteria encapsulation in biomaterials, controlled culture environments, and live monitoring of growth and proliferation.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d0lc00300j</identifier><identifier>PMID: 32420570</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Agar ; Antibiotics ; Bacteria ; Biomedical materials ; Computational fluid dynamics ; Computer simulation ; Droplets ; Flow velocity ; Gelation ; Hydrogels ; Microbiology ; Microfluidics ; Newtonian fluids ; Non Newtonian fluids ; Operating temperature ; Temperature ; Temperature dependence ; Urinary tract</subject><ispartof>Lab on a chip, 2020-06, Vol.2 (12), p.2175-2187</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-e4a70a77093e7b08415f44cab16f92c6622a83f5e348caeabfe3e0ae1c0975ec3</citedby><cites>FETCH-LOGICAL-c400t-e4a70a77093e7b08415f44cab16f92c6622a83f5e348caeabfe3e0ae1c0975ec3</cites><orcidid>0000-0003-1592-9464 ; 0000-0001-8736-7259 ; 0000-0002-2309-2388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32420570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khater, Asmaa</creatorcontrib><creatorcontrib>Abdelrehim, Osama</creatorcontrib><creatorcontrib>Mohammadi, Mehdi</creatorcontrib><creatorcontrib>Azarmanesh, Milad</creatorcontrib><creatorcontrib>Janmaleki, Mohsen</creatorcontrib><creatorcontrib>Salahandish, Razieh</creatorcontrib><creatorcontrib>Mohamad, Abdulmajeed</creatorcontrib><creatorcontrib>Sanati-Nezhad, Amir</creatorcontrib><title>Picoliter agar droplet breakup in microfluidics meets microbiology application: numerical and experimental approaches</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Droplet microfluidics has provided lab-on-a-chip platforms with the capability of bacteria encapsulation in biomaterials, controlled culture environments, and live monitoring of growth and proliferation. The droplets are mainly generated from biomaterials with temperature dependent gelation behavior which necessitates stable and size-controlled droplet formation within microfluidics. Here, the biomaterial is agar hydrogel with a non-Newtonian response at operating temperatures below 40 °C, the upper-temperature threshold for cells and pathogens. The size of the produced droplets and the formation regimes are examined when the agar is injected at a constant temperature of 37 °C with agar concentrations of 0.5%, 1%, and 2% and different flow rate ratios of the dispersed phase to the continuous phase (
: 0.1 to 1). The numerical simulations show that
and the capillary number (Ca) are the key parameters controlling the agar droplet size and formation regime, from dripping to jetting. Also, increasing the agar concentration produces smaller droplets. The simulation data were validated against experimental agar droplet generation and transport in microfluidics. This work helps to understand the physics of droplet generation in droplet microfluidic systems operating with non-Newtonian fluids. Pathogenic bacteria were successfully cultured and monitored in high resolution in agar droplets for further research in antibiotic susceptibility testing in bacteremia and urinary tract infection.
Droplet microfluidics has provided lab-on-a-chip platforms with the capability of bacteria encapsulation in biomaterials, controlled culture environments, and live monitoring of growth and proliferation.</description><subject>Agar</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Biomedical materials</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Droplets</subject><subject>Flow velocity</subject><subject>Gelation</subject><subject>Hydrogels</subject><subject>Microbiology</subject><subject>Microfluidics</subject><subject>Newtonian fluids</subject><subject>Non Newtonian fluids</subject><subject>Operating temperature</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Urinary tract</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kctv1DAQxi1URNuFC3cqV71USAvj2Hn1hrYtD60EBzhHE2fSeuvErp1I9L_HZZet1AOneXw_zXj8MfZWwAcBsv7YgdUAEmDzgh0JVcoliKo-2Od1eciOY9wAiFwV1St2KDOVQV7CEZt_GO2smShwvMHAu-C8pYm3gfBu9tyMfDA6uN7OpjM68oFoittea5x1Nw8cvbdG42TceMHHeaCQKstx7Dj99qkaaJweG94Hh_qW4mv2skcb6c0uLtiv66ufqy_L9ffPX1ef1kutAKYlKSwByxJqSWULlRJ5r5TGVhR9nemiyDKsZJ-TVJVGwrYnSYAkNNRlTlou2Pl2blp8P1OcmsFETdbiSG6OTaZAyUpBXSX07Bm6cXMY0-sSJaTKVSaKRL3fUun8GAP1jU_nYXhoBDSPZjSXsF79NeNbgk92I-d2oG6P_vv9BLzbAiHqvfrkZtJP_6c3vuvlH9pvm9M</recordid><startdate>20200621</startdate><enddate>20200621</enddate><creator>Khater, Asmaa</creator><creator>Abdelrehim, Osama</creator><creator>Mohammadi, Mehdi</creator><creator>Azarmanesh, Milad</creator><creator>Janmaleki, Mohsen</creator><creator>Salahandish, Razieh</creator><creator>Mohamad, Abdulmajeed</creator><creator>Sanati-Nezhad, Amir</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1592-9464</orcidid><orcidid>https://orcid.org/0000-0001-8736-7259</orcidid><orcidid>https://orcid.org/0000-0002-2309-2388</orcidid></search><sort><creationdate>20200621</creationdate><title>Picoliter agar droplet breakup in microfluidics meets microbiology application: numerical and experimental approaches</title><author>Khater, Asmaa ; Abdelrehim, Osama ; Mohammadi, Mehdi ; Azarmanesh, Milad ; Janmaleki, Mohsen ; Salahandish, Razieh ; Mohamad, Abdulmajeed ; Sanati-Nezhad, Amir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-e4a70a77093e7b08415f44cab16f92c6622a83f5e348caeabfe3e0ae1c0975ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agar</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Biomedical materials</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Droplets</topic><topic>Flow velocity</topic><topic>Gelation</topic><topic>Hydrogels</topic><topic>Microbiology</topic><topic>Microfluidics</topic><topic>Newtonian fluids</topic><topic>Non Newtonian fluids</topic><topic>Operating temperature</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Urinary tract</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khater, Asmaa</creatorcontrib><creatorcontrib>Abdelrehim, Osama</creatorcontrib><creatorcontrib>Mohammadi, Mehdi</creatorcontrib><creatorcontrib>Azarmanesh, Milad</creatorcontrib><creatorcontrib>Janmaleki, Mohsen</creatorcontrib><creatorcontrib>Salahandish, Razieh</creatorcontrib><creatorcontrib>Mohamad, Abdulmajeed</creatorcontrib><creatorcontrib>Sanati-Nezhad, Amir</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khater, Asmaa</au><au>Abdelrehim, Osama</au><au>Mohammadi, Mehdi</au><au>Azarmanesh, Milad</au><au>Janmaleki, Mohsen</au><au>Salahandish, Razieh</au><au>Mohamad, Abdulmajeed</au><au>Sanati-Nezhad, Amir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Picoliter agar droplet breakup in microfluidics meets microbiology application: numerical and experimental approaches</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2020-06-21</date><risdate>2020</risdate><volume>2</volume><issue>12</issue><spage>2175</spage><epage>2187</epage><pages>2175-2187</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Droplet microfluidics has provided lab-on-a-chip platforms with the capability of bacteria encapsulation in biomaterials, controlled culture environments, and live monitoring of growth and proliferation. The droplets are mainly generated from biomaterials with temperature dependent gelation behavior which necessitates stable and size-controlled droplet formation within microfluidics. Here, the biomaterial is agar hydrogel with a non-Newtonian response at operating temperatures below 40 °C, the upper-temperature threshold for cells and pathogens. The size of the produced droplets and the formation regimes are examined when the agar is injected at a constant temperature of 37 °C with agar concentrations of 0.5%, 1%, and 2% and different flow rate ratios of the dispersed phase to the continuous phase (
: 0.1 to 1). The numerical simulations show that
and the capillary number (Ca) are the key parameters controlling the agar droplet size and formation regime, from dripping to jetting. Also, increasing the agar concentration produces smaller droplets. The simulation data were validated against experimental agar droplet generation and transport in microfluidics. This work helps to understand the physics of droplet generation in droplet microfluidic systems operating with non-Newtonian fluids. Pathogenic bacteria were successfully cultured and monitored in high resolution in agar droplets for further research in antibiotic susceptibility testing in bacteremia and urinary tract infection.
Droplet microfluidics has provided lab-on-a-chip platforms with the capability of bacteria encapsulation in biomaterials, controlled culture environments, and live monitoring of growth and proliferation.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32420570</pmid><doi>10.1039/d0lc00300j</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1592-9464</orcidid><orcidid>https://orcid.org/0000-0001-8736-7259</orcidid><orcidid>https://orcid.org/0000-0002-2309-2388</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2020-06, Vol.2 (12), p.2175-2187 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_rsc_primary_d0lc00300j |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Agar Antibiotics Bacteria Biomedical materials Computational fluid dynamics Computer simulation Droplets Flow velocity Gelation Hydrogels Microbiology Microfluidics Newtonian fluids Non Newtonian fluids Operating temperature Temperature Temperature dependence Urinary tract |
title | Picoliter agar droplet breakup in microfluidics meets microbiology application: numerical and experimental approaches |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Picoliter%20agar%20droplet%20breakup%20in%20microfluidics%20meets%20microbiology%20application:%20numerical%20and%20experimental%20approaches&rft.jtitle=Lab%20on%20a%20chip&rft.au=Khater,%20Asmaa&rft.date=2020-06-21&rft.volume=2&rft.issue=12&rft.spage=2175&rft.epage=2187&rft.pages=2175-2187&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d0lc00300j&rft_dat=%3Cproquest_rsc_p%3E2404384098%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-e4a70a77093e7b08415f44cab16f92c6622a83f5e348caeabfe3e0ae1c0975ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2413454216&rft_id=info:pmid/32420570&rfr_iscdi=true |