Loading…

Rational understanding of the catalytic mechanism of molybdenum carbide in polysulfide conversion in lithium-sulfur batteries

Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage devices due to their high theoretical energy density and whose practical applications are mainly hampered by the shuttle effect of intermediate polysulfides (LiPSs). Anchoring materials, such as β-Mo 2 C, wit...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-06, Vol.8 (23), p.11818-11823
Main Authors: Sun, Mingzhu, Wang, Zhao, Li, Xue, Li, Haibo, Jia, Hongsheng, Xue, Xiangxin, Jin, Ming, Li, Jiaqi, Xie, Yu, Feng, Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-399846d56f06d2c262a3c495a3752b89f6eb1695d4e01d9e640b138d41c169c13
cites cdi_FETCH-LOGICAL-c344t-399846d56f06d2c262a3c495a3752b89f6eb1695d4e01d9e640b138d41c169c13
container_end_page 11823
container_issue 23
container_start_page 11818
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 8
creator Sun, Mingzhu
Wang, Zhao
Li, Xue
Li, Haibo
Jia, Hongsheng
Xue, Xiangxin
Jin, Ming
Li, Jiaqi
Xie, Yu
Feng, Ming
description Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage devices due to their high theoretical energy density and whose practical applications are mainly hampered by the shuttle effect of intermediate polysulfides (LiPSs). Anchoring materials, such as β-Mo 2 C, with strong chemical interaction has been proposed to improve the electrochemical performance of Li-S batteries. However, the chemical bonding and conversion reaction of LiPSs on the Mo 2 C surface are not well studied. Here, we report on the discovery that the superior performance of Mo 2 C originates from the sulfur termination. By combining X-ray spectroscopy measurements and theoretical calculations, we reveal that sulfur can passivate the Mo 2 C (101) surface, which not only offers moderate chemical interaction with LiPSs but also facilitates the conversion reactions during both the discharge and charge processes. Our results suggest that it is important to consider the sulfurization of catalysts with metal surfaces when they are used to accelerate the conversion of polysulfides. The S-passivated Mo 2 C behaves like a transition metal sulfide with strong binding to LiPSs, a small LiPS conversion energy barrier, and a low Li 2 S decomposition barrier.
doi_str_mv 10.1039/d0ta01217c
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d0ta01217c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2413587737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-399846d56f06d2c262a3c495a3752b89f6eb1695d4e01d9e640b138d41c169c13</originalsourceid><addsrcrecordid>eNp9kc9LwzAUx4MoOOYu3oWIN6GaNGnaHMf8CQNB5rmkSeoy2rQmqdCD_7upk3kzl5e8z4cv5D0AzjG6wYjwW4WCQDjFuTwCsxRlKMkpZ8eHe1GcgoX3OxRPgRDjfAa-XkUwnRUNHKzSzgdhlbHvsKth2GooRRDNGIyErZZbYY1vJ9R2zVgpbYc2Gq4ySkNjYR-7fmjq6Sk7-xnjYvREGhO2ZmiTiQ4OViIE7Yz2Z-CkFo3Xi986B28P95vVU7J-eXxeLdeJJJSGhHBeUKYyViOmUpmyVBBJeSZInqVVwWumK8x4pqhGWHHNKKowKRTFMrYlJnNwtc_tXfcxaB_KXTe4-GtfphSTrMhzkkfrem9J13nvdF32zrTCjSVG5TTh8g5tlj8TXkX5Yi87Lw_e3wYiv_yPl72qyTfHW4UL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413587737</pqid></control><display><type>article</type><title>Rational understanding of the catalytic mechanism of molybdenum carbide in polysulfide conversion in lithium-sulfur batteries</title><source>Royal Society of Chemistry</source><creator>Sun, Mingzhu ; Wang, Zhao ; Li, Xue ; Li, Haibo ; Jia, Hongsheng ; Xue, Xiangxin ; Jin, Ming ; Li, Jiaqi ; Xie, Yu ; Feng, Ming</creator><creatorcontrib>Sun, Mingzhu ; Wang, Zhao ; Li, Xue ; Li, Haibo ; Jia, Hongsheng ; Xue, Xiangxin ; Jin, Ming ; Li, Jiaqi ; Xie, Yu ; Feng, Ming</creatorcontrib><description>Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage devices due to their high theoretical energy density and whose practical applications are mainly hampered by the shuttle effect of intermediate polysulfides (LiPSs). Anchoring materials, such as β-Mo 2 C, with strong chemical interaction has been proposed to improve the electrochemical performance of Li-S batteries. However, the chemical bonding and conversion reaction of LiPSs on the Mo 2 C surface are not well studied. Here, we report on the discovery that the superior performance of Mo 2 C originates from the sulfur termination. By combining X-ray spectroscopy measurements and theoretical calculations, we reveal that sulfur can passivate the Mo 2 C (101) surface, which not only offers moderate chemical interaction with LiPSs but also facilitates the conversion reactions during both the discharge and charge processes. Our results suggest that it is important to consider the sulfurization of catalysts with metal surfaces when they are used to accelerate the conversion of polysulfides. The S-passivated Mo 2 C behaves like a transition metal sulfide with strong binding to LiPSs, a small LiPS conversion energy barrier, and a low Li 2 S decomposition barrier.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta01217c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anchoring ; Catalysts ; Catalytic converters ; Chemical bonds ; Chemical reactions ; Conversion ; Electrochemical analysis ; Electrochemistry ; Energy storage ; Flux density ; Lithium ; Lithium sulfur batteries ; Metal surfaces ; Molybdenum ; Molybdenum carbide ; Polysulfides ; Storage batteries ; Sulfur ; Sulfurization ; X-ray spectroscopy</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-06, Vol.8 (23), p.11818-11823</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-399846d56f06d2c262a3c495a3752b89f6eb1695d4e01d9e640b138d41c169c13</citedby><cites>FETCH-LOGICAL-c344t-399846d56f06d2c262a3c495a3752b89f6eb1695d4e01d9e640b138d41c169c13</cites><orcidid>0000-0002-7782-5428 ; 0000-0001-6108-1965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Sun, Mingzhu</creatorcontrib><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Li, Xue</creatorcontrib><creatorcontrib>Li, Haibo</creatorcontrib><creatorcontrib>Jia, Hongsheng</creatorcontrib><creatorcontrib>Xue, Xiangxin</creatorcontrib><creatorcontrib>Jin, Ming</creatorcontrib><creatorcontrib>Li, Jiaqi</creatorcontrib><creatorcontrib>Xie, Yu</creatorcontrib><creatorcontrib>Feng, Ming</creatorcontrib><title>Rational understanding of the catalytic mechanism of molybdenum carbide in polysulfide conversion in lithium-sulfur batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage devices due to their high theoretical energy density and whose practical applications are mainly hampered by the shuttle effect of intermediate polysulfides (LiPSs). Anchoring materials, such as β-Mo 2 C, with strong chemical interaction has been proposed to improve the electrochemical performance of Li-S batteries. However, the chemical bonding and conversion reaction of LiPSs on the Mo 2 C surface are not well studied. Here, we report on the discovery that the superior performance of Mo 2 C originates from the sulfur termination. By combining X-ray spectroscopy measurements and theoretical calculations, we reveal that sulfur can passivate the Mo 2 C (101) surface, which not only offers moderate chemical interaction with LiPSs but also facilitates the conversion reactions during both the discharge and charge processes. Our results suggest that it is important to consider the sulfurization of catalysts with metal surfaces when they are used to accelerate the conversion of polysulfides. The S-passivated Mo 2 C behaves like a transition metal sulfide with strong binding to LiPSs, a small LiPS conversion energy barrier, and a low Li 2 S decomposition barrier.</description><subject>Anchoring</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Chemical bonds</subject><subject>Chemical reactions</subject><subject>Conversion</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Metal surfaces</subject><subject>Molybdenum</subject><subject>Molybdenum carbide</subject><subject>Polysulfides</subject><subject>Storage batteries</subject><subject>Sulfur</subject><subject>Sulfurization</subject><subject>X-ray spectroscopy</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc9LwzAUx4MoOOYu3oWIN6GaNGnaHMf8CQNB5rmkSeoy2rQmqdCD_7upk3kzl5e8z4cv5D0AzjG6wYjwW4WCQDjFuTwCsxRlKMkpZ8eHe1GcgoX3OxRPgRDjfAa-XkUwnRUNHKzSzgdhlbHvsKth2GooRRDNGIyErZZbYY1vJ9R2zVgpbYc2Gq4ySkNjYR-7fmjq6Sk7-xnjYvREGhO2ZmiTiQ4OViIE7Yz2Z-CkFo3Xi986B28P95vVU7J-eXxeLdeJJJSGhHBeUKYyViOmUpmyVBBJeSZInqVVwWumK8x4pqhGWHHNKKowKRTFMrYlJnNwtc_tXfcxaB_KXTe4-GtfphSTrMhzkkfrem9J13nvdF32zrTCjSVG5TTh8g5tlj8TXkX5Yi87Lw_e3wYiv_yPl72qyTfHW4UL</recordid><startdate>20200621</startdate><enddate>20200621</enddate><creator>Sun, Mingzhu</creator><creator>Wang, Zhao</creator><creator>Li, Xue</creator><creator>Li, Haibo</creator><creator>Jia, Hongsheng</creator><creator>Xue, Xiangxin</creator><creator>Jin, Ming</creator><creator>Li, Jiaqi</creator><creator>Xie, Yu</creator><creator>Feng, Ming</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7782-5428</orcidid><orcidid>https://orcid.org/0000-0001-6108-1965</orcidid></search><sort><creationdate>20200621</creationdate><title>Rational understanding of the catalytic mechanism of molybdenum carbide in polysulfide conversion in lithium-sulfur batteries</title><author>Sun, Mingzhu ; Wang, Zhao ; Li, Xue ; Li, Haibo ; Jia, Hongsheng ; Xue, Xiangxin ; Jin, Ming ; Li, Jiaqi ; Xie, Yu ; Feng, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-399846d56f06d2c262a3c495a3752b89f6eb1695d4e01d9e640b138d41c169c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anchoring</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Chemical bonds</topic><topic>Chemical reactions</topic><topic>Conversion</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Metal surfaces</topic><topic>Molybdenum</topic><topic>Molybdenum carbide</topic><topic>Polysulfides</topic><topic>Storage batteries</topic><topic>Sulfur</topic><topic>Sulfurization</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Mingzhu</creatorcontrib><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Li, Xue</creatorcontrib><creatorcontrib>Li, Haibo</creatorcontrib><creatorcontrib>Jia, Hongsheng</creatorcontrib><creatorcontrib>Xue, Xiangxin</creatorcontrib><creatorcontrib>Jin, Ming</creatorcontrib><creatorcontrib>Li, Jiaqi</creatorcontrib><creatorcontrib>Xie, Yu</creatorcontrib><creatorcontrib>Feng, Ming</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Mingzhu</au><au>Wang, Zhao</au><au>Li, Xue</au><au>Li, Haibo</au><au>Jia, Hongsheng</au><au>Xue, Xiangxin</au><au>Jin, Ming</au><au>Li, Jiaqi</au><au>Xie, Yu</au><au>Feng, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational understanding of the catalytic mechanism of molybdenum carbide in polysulfide conversion in lithium-sulfur batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-06-21</date><risdate>2020</risdate><volume>8</volume><issue>23</issue><spage>11818</spage><epage>11823</epage><pages>11818-11823</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage devices due to their high theoretical energy density and whose practical applications are mainly hampered by the shuttle effect of intermediate polysulfides (LiPSs). Anchoring materials, such as β-Mo 2 C, with strong chemical interaction has been proposed to improve the electrochemical performance of Li-S batteries. However, the chemical bonding and conversion reaction of LiPSs on the Mo 2 C surface are not well studied. Here, we report on the discovery that the superior performance of Mo 2 C originates from the sulfur termination. By combining X-ray spectroscopy measurements and theoretical calculations, we reveal that sulfur can passivate the Mo 2 C (101) surface, which not only offers moderate chemical interaction with LiPSs but also facilitates the conversion reactions during both the discharge and charge processes. Our results suggest that it is important to consider the sulfurization of catalysts with metal surfaces when they are used to accelerate the conversion of polysulfides. The S-passivated Mo 2 C behaves like a transition metal sulfide with strong binding to LiPSs, a small LiPS conversion energy barrier, and a low Li 2 S decomposition barrier.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta01217c</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7782-5428</orcidid><orcidid>https://orcid.org/0000-0001-6108-1965</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2020-06, Vol.8 (23), p.11818-11823
issn 2050-7488
2050-7496
language eng
recordid cdi_rsc_primary_d0ta01217c
source Royal Society of Chemistry
subjects Anchoring
Catalysts
Catalytic converters
Chemical bonds
Chemical reactions
Conversion
Electrochemical analysis
Electrochemistry
Energy storage
Flux density
Lithium
Lithium sulfur batteries
Metal surfaces
Molybdenum
Molybdenum carbide
Polysulfides
Storage batteries
Sulfur
Sulfurization
X-ray spectroscopy
title Rational understanding of the catalytic mechanism of molybdenum carbide in polysulfide conversion in lithium-sulfur batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20understanding%20of%20the%20catalytic%20mechanism%20of%20molybdenum%20carbide%20in%20polysulfide%20conversion%20in%20lithium-sulfur%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Sun,%20Mingzhu&rft.date=2020-06-21&rft.volume=8&rft.issue=23&rft.spage=11818&rft.epage=11823&rft.pages=11818-11823&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta01217c&rft_dat=%3Cproquest_rsc_p%3E2413587737%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-399846d56f06d2c262a3c495a3752b89f6eb1695d4e01d9e640b138d41c169c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2413587737&rft_id=info:pmid/&rfr_iscdi=true