Loading…

Highly uniform platanus fruit-like CuCoS microspheres as an electrode material for high performance lithium-ion batteries and supercapacitors

Platanus fruit-like CuCo 2 S 4 microspheres were fabricated by using a facile hydrothermal method followed by a sulfidation process. As a lithium storage material, they deliver an outstanding initial specific capacity of 1119.3 mA h g −1 at 0.05 A g −1 and a high reversibility of 954 mA h g −1 over...

Full description

Saved in:
Bibliographic Details
Published in:Dalton transactions : an international journal of inorganic chemistry 2021-09, Vol.5 (37), p.1342-1351
Main Authors: Guan, Baole, Zhao, Yu-Shen, Zhang, Nan, Zhang, Jun-Hong, Sun, Ting, Yi, Ting-Feng
Format: Article
Language:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Platanus fruit-like CuCo 2 S 4 microspheres were fabricated by using a facile hydrothermal method followed by a sulfidation process. As a lithium storage material, they deliver an outstanding initial specific capacity of 1119.3 mA h g −1 at 0.05 A g −1 and a high reversibility of 954 mA h g −1 over 200 cycles even at 1 A g −1 . In addition, when applied in supercapacitors they display a superb specific capacitance of 824 F g −1 at 1 A g −1 , even over 10 000 cycles and they can also maintain 75% retention at 5 A g −1 and exhibit good reversibility. Furthermore, an advanced asymmetric supercapacitor (ASC) exhibits an advantageous energy density of 36.67 W h kg −1 when the power density increases up to 750 W kg −1 . Additionally, the assembled device can easily light a 1.5 V bulb for several minutes. The excellent performance of CuCo 2 S 4 is due to the bimetallic synergistic effect and the unique platanus fruit-like microsphere architecture, which can limit the restacking of the structure and provide suitable voids. This excellent performance confirms that platanus fruit-like CuCo 2 S 4 microspheres are a promising electrode material for energy storge. This work will provide a new strategy to prepare high-performance bimetallic sulfide anode materials by a facile method. Highly uniform platanus-like CuCo 2 S 4 microspheres show potential for both lithium ion batteries and supercapacitors.
ISSN:1477-9226
1477-9234
DOI:10.1039/d1dt02306c