Loading…

Anti-inflammatory effects of oleic acid and the anthocyanin keracyanin alone and in combination: effects on monocyte and macrophage responses and the NF-κB pathway

Monocyte recruitment and activation of macrophages are essential for homeostasis but are also related to the development and progression of cardiometabolic diseases. The management of inflammation with dietary components has been widely investigated. Two components that may influence inflammation ar...

Full description

Saved in:
Bibliographic Details
Published in:Food & function 2021-09, Vol.12 (17), p.799-7922
Main Authors: Santamarina, Aline B, Pisani, Luciana P, Baker, Ella J, Marat, Andreea D, Valenzuela, Carina A, Miles, Elizabeth A, Calder, Philip C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Monocyte recruitment and activation of macrophages are essential for homeostasis but are also related to the development and progression of cardiometabolic diseases. The management of inflammation with dietary components has been widely investigated. Two components that may influence inflammation are unsaturated fatty acids such as oleic acid (OA; 18:1cis-9) and antioxidant compounds like anthocyanins. Molecular and metabolic effects of such bioactive compounds are usually investigated in isolation, whereas they may be present in combination in foods or the diet. Considering this, we aimed to analyze the effects of OA and the anthocyanin keracyanin (AC) alone and in combination on toll-like receptor-mediated inflammatory responses in monocytes and macrophages. For this, THP-1-derived macrophages and monocytes were exposed to 3 treatments: OA, AC, or the combination (OAAC) and then stimulated with lipopolysaccharide. Inflammation-related gene expression and protein concentrations of IL-1β, TNF-α, IL-6, MCP-1, and IL-10 were assessed. Also, NFκBp65, IκBα, and PPAR-γ protein expression were determined. OA, AC, and OAAC decreased pNFκBp65, PPARγ, IκBα, TNF-α, IL-1β, IL-6, and MCP-1 and increased IL-10. MCP-1 protein expression was lower with OAAC than with either OA and AC alone. Compared to control, OAAC decreased mRNA for TLR4, IκKα, IκBα, NFκB1, MCP-1, TNF-α, IL-6, and IL-1β more than OA or AC did alone. Also, IL-10 mRNA was increased by OAAC compared with control, OA, and AC. In summary, OA and AC have anti-inflammatory effects individually but their combination (OAAC) exerts a greater effect. The combination of oleic acid and keracyanin had greater effects than either compound alone, targeting the NFκB cascade reducing secretion of pro-inflammatory cytokines and increasing anti-inflammatory status in THP-1 cells.
ISSN:2042-6496
2042-650X
DOI:10.1039/d1fo01304a