Loading…

Temperature-programmed desorption of large molecules: influence of thin film structure and origin of intermolecular repulsion

Although the exact knowledge of the binding energy of organic adsorbates on solid surfaces is of vital importance for the realization of molecular nanostructures and the theoretical modelling of molecule-substrate interactions, an experimental determination is by no means trivial. Temperature-progra...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2021-08, Vol.13 (32), p.13816-13826
Main Authors: Dombrowski, Pierre-Martin, Kachel, Stefan R, Neuhaus, Leonard, Gottfried, J. Michael, Witte, Gregor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c314t-fa245179f084517218ea6ccd97393f4170e7a04c64b9d802cacae8822b250ad83
cites cdi_FETCH-LOGICAL-c314t-fa245179f084517218ea6ccd97393f4170e7a04c64b9d802cacae8822b250ad83
container_end_page 13826
container_issue 32
container_start_page 13816
container_title Nanoscale
container_volume 13
creator Dombrowski, Pierre-Martin
Kachel, Stefan R
Neuhaus, Leonard
Gottfried, J. Michael
Witte, Gregor
description Although the exact knowledge of the binding energy of organic adsorbates on solid surfaces is of vital importance for the realization of molecular nanostructures and the theoretical modelling of molecule-substrate interactions, an experimental determination is by no means trivial. Temperature-programmed desorption (TPD) is a widely used technique that can provide such information, but a quantitative analysis requires detailed knowledge of the pre-exponential factor of desorption and is therefore rarely performed on a quantitative level for larger molecules that often exhibit notable mutual intermolecular interactions. Here, we provide a thorough anlysis of TPD data of monolayers of pentacene and perfluoropentacene adsorbed on Au(111) that serve as a model system for polycyclic aromatic hydrocarbons adsorbed on noble metal surfaces. We show that the pre-exponential factor varies by several orders of magnitude with the surface coverage and evolves in a step-like fashion due to the sudden activation of a rotational degree of freedom during thermally controlled monolayer desorption. Using complementary coverage-dependent work function measurements, the interface dipole moments were determined. This allows to identify the origin and quantify the relative contributions of the lateral intermolecular interactions, which we modelled by force field calculations. This analysis clearly shows that the main cause for intermolecular repulsion are electrostatic interactions between the intramolecular charge distributions, while interface dipoles play only a minor role. The combination of temperature-programmed desorption with Kelvin probe and STM data allows to quantify and characterize intermolecular interactions in pentacene monolayers adsorbed on gold.
doi_str_mv 10.1039/d1nr03532k
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d1nr03532k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569379421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-fa245179f084517218ea6ccd97393f4170e7a04c64b9d802cacae8822b250ad83</originalsourceid><addsrcrecordid>eNpdkctLw0AQxoMoWKsX78KCFxGi-2oe3qQ-sShIPYftZlK3bnbjbHLw4P9uYksFTzMwv-9jZr4oOmb0glGRX5bMIRUTwT92ohGnksZCpHx32ydyPzoIYUVpkotEjKLvOdQNoGo7hLhBv0RV11CSEoLHpjXeEV8Rq3AJpPYWdGchXBHjKtuB0zBM23fjSGVsTUKLnR6siHIl8WiW5ldvXAu4kSskCE1nQ-99GO1VygY42tRx9HZ3O58-xLOX-8fp9SzWgsk2rhSXE5bmFc2GylkGKtG6zFORi0qylEKqqNSJXORlRrlWWkGWcb7gE6rKTIyjs7Vvf-FnB6EtahM0WKsc-C4UfNK_I80lZz16-g9d-Q5dv91AcSlFkuU9db6mNPoQEKqiQVMr_CoYLYYkihv2_PqbxFMPn6xhDHrL_SUlfgA52od8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562443689</pqid></control><display><type>article</type><title>Temperature-programmed desorption of large molecules: influence of thin film structure and origin of intermolecular repulsion</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Dombrowski, Pierre-Martin ; Kachel, Stefan R ; Neuhaus, Leonard ; Gottfried, J. Michael ; Witte, Gregor</creator><creatorcontrib>Dombrowski, Pierre-Martin ; Kachel, Stefan R ; Neuhaus, Leonard ; Gottfried, J. Michael ; Witte, Gregor</creatorcontrib><description>Although the exact knowledge of the binding energy of organic adsorbates on solid surfaces is of vital importance for the realization of molecular nanostructures and the theoretical modelling of molecule-substrate interactions, an experimental determination is by no means trivial. Temperature-programmed desorption (TPD) is a widely used technique that can provide such information, but a quantitative analysis requires detailed knowledge of the pre-exponential factor of desorption and is therefore rarely performed on a quantitative level for larger molecules that often exhibit notable mutual intermolecular interactions. Here, we provide a thorough anlysis of TPD data of monolayers of pentacene and perfluoropentacene adsorbed on Au(111) that serve as a model system for polycyclic aromatic hydrocarbons adsorbed on noble metal surfaces. We show that the pre-exponential factor varies by several orders of magnitude with the surface coverage and evolves in a step-like fashion due to the sudden activation of a rotational degree of freedom during thermally controlled monolayer desorption. Using complementary coverage-dependent work function measurements, the interface dipole moments were determined. This allows to identify the origin and quantify the relative contributions of the lateral intermolecular interactions, which we modelled by force field calculations. This analysis clearly shows that the main cause for intermolecular repulsion are electrostatic interactions between the intramolecular charge distributions, while interface dipoles play only a minor role. The combination of temperature-programmed desorption with Kelvin probe and STM data allows to quantify and characterize intermolecular interactions in pentacene monolayers adsorbed on gold.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d1nr03532k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorbates ; Algorithms ; Desorption ; Dipole moments ; Gold ; Metal surfaces ; Molecular structure ; Moments of inertia ; Monolayers ; Multilayers ; Noble metals ; Photomicrographs ; Polycyclic aromatic hydrocarbons ; Quantitative analysis ; Solid surfaces ; Substrates ; Thin films ; Work functions</subject><ispartof>Nanoscale, 2021-08, Vol.13 (32), p.13816-13826</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-fa245179f084517218ea6ccd97393f4170e7a04c64b9d802cacae8822b250ad83</citedby><cites>FETCH-LOGICAL-c314t-fa245179f084517218ea6ccd97393f4170e7a04c64b9d802cacae8822b250ad83</cites><orcidid>0000-0002-3815-633X ; 0000-0001-5579-2568 ; 0000-0001-5203-4163 ; 0000-0003-2237-0953 ; 0000-0003-0323-2440</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dombrowski, Pierre-Martin</creatorcontrib><creatorcontrib>Kachel, Stefan R</creatorcontrib><creatorcontrib>Neuhaus, Leonard</creatorcontrib><creatorcontrib>Gottfried, J. Michael</creatorcontrib><creatorcontrib>Witte, Gregor</creatorcontrib><title>Temperature-programmed desorption of large molecules: influence of thin film structure and origin of intermolecular repulsion</title><title>Nanoscale</title><description>Although the exact knowledge of the binding energy of organic adsorbates on solid surfaces is of vital importance for the realization of molecular nanostructures and the theoretical modelling of molecule-substrate interactions, an experimental determination is by no means trivial. Temperature-programmed desorption (TPD) is a widely used technique that can provide such information, but a quantitative analysis requires detailed knowledge of the pre-exponential factor of desorption and is therefore rarely performed on a quantitative level for larger molecules that often exhibit notable mutual intermolecular interactions. Here, we provide a thorough anlysis of TPD data of monolayers of pentacene and perfluoropentacene adsorbed on Au(111) that serve as a model system for polycyclic aromatic hydrocarbons adsorbed on noble metal surfaces. We show that the pre-exponential factor varies by several orders of magnitude with the surface coverage and evolves in a step-like fashion due to the sudden activation of a rotational degree of freedom during thermally controlled monolayer desorption. Using complementary coverage-dependent work function measurements, the interface dipole moments were determined. This allows to identify the origin and quantify the relative contributions of the lateral intermolecular interactions, which we modelled by force field calculations. This analysis clearly shows that the main cause for intermolecular repulsion are electrostatic interactions between the intramolecular charge distributions, while interface dipoles play only a minor role. The combination of temperature-programmed desorption with Kelvin probe and STM data allows to quantify and characterize intermolecular interactions in pentacene monolayers adsorbed on gold.</description><subject>Adsorbates</subject><subject>Algorithms</subject><subject>Desorption</subject><subject>Dipole moments</subject><subject>Gold</subject><subject>Metal surfaces</subject><subject>Molecular structure</subject><subject>Moments of inertia</subject><subject>Monolayers</subject><subject>Multilayers</subject><subject>Noble metals</subject><subject>Photomicrographs</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Quantitative analysis</subject><subject>Solid surfaces</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Work functions</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkctLw0AQxoMoWKsX78KCFxGi-2oe3qQ-sShIPYftZlK3bnbjbHLw4P9uYksFTzMwv-9jZr4oOmb0glGRX5bMIRUTwT92ohGnksZCpHx32ydyPzoIYUVpkotEjKLvOdQNoGo7hLhBv0RV11CSEoLHpjXeEV8Rq3AJpPYWdGchXBHjKtuB0zBM23fjSGVsTUKLnR6siHIl8WiW5ldvXAu4kSskCE1nQ-99GO1VygY42tRx9HZ3O58-xLOX-8fp9SzWgsk2rhSXE5bmFc2GylkGKtG6zFORi0qylEKqqNSJXORlRrlWWkGWcb7gE6rKTIyjs7Vvf-FnB6EtahM0WKsc-C4UfNK_I80lZz16-g9d-Q5dv91AcSlFkuU9db6mNPoQEKqiQVMr_CoYLYYkihv2_PqbxFMPn6xhDHrL_SUlfgA52od8</recordid><startdate>20210828</startdate><enddate>20210828</enddate><creator>Dombrowski, Pierre-Martin</creator><creator>Kachel, Stefan R</creator><creator>Neuhaus, Leonard</creator><creator>Gottfried, J. Michael</creator><creator>Witte, Gregor</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3815-633X</orcidid><orcidid>https://orcid.org/0000-0001-5579-2568</orcidid><orcidid>https://orcid.org/0000-0001-5203-4163</orcidid><orcidid>https://orcid.org/0000-0003-2237-0953</orcidid><orcidid>https://orcid.org/0000-0003-0323-2440</orcidid></search><sort><creationdate>20210828</creationdate><title>Temperature-programmed desorption of large molecules: influence of thin film structure and origin of intermolecular repulsion</title><author>Dombrowski, Pierre-Martin ; Kachel, Stefan R ; Neuhaus, Leonard ; Gottfried, J. Michael ; Witte, Gregor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-fa245179f084517218ea6ccd97393f4170e7a04c64b9d802cacae8822b250ad83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorbates</topic><topic>Algorithms</topic><topic>Desorption</topic><topic>Dipole moments</topic><topic>Gold</topic><topic>Metal surfaces</topic><topic>Molecular structure</topic><topic>Moments of inertia</topic><topic>Monolayers</topic><topic>Multilayers</topic><topic>Noble metals</topic><topic>Photomicrographs</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Quantitative analysis</topic><topic>Solid surfaces</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dombrowski, Pierre-Martin</creatorcontrib><creatorcontrib>Kachel, Stefan R</creatorcontrib><creatorcontrib>Neuhaus, Leonard</creatorcontrib><creatorcontrib>Gottfried, J. Michael</creatorcontrib><creatorcontrib>Witte, Gregor</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dombrowski, Pierre-Martin</au><au>Kachel, Stefan R</au><au>Neuhaus, Leonard</au><au>Gottfried, J. Michael</au><au>Witte, Gregor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-programmed desorption of large molecules: influence of thin film structure and origin of intermolecular repulsion</atitle><jtitle>Nanoscale</jtitle><date>2021-08-28</date><risdate>2021</risdate><volume>13</volume><issue>32</issue><spage>13816</spage><epage>13826</epage><pages>13816-13826</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Although the exact knowledge of the binding energy of organic adsorbates on solid surfaces is of vital importance for the realization of molecular nanostructures and the theoretical modelling of molecule-substrate interactions, an experimental determination is by no means trivial. Temperature-programmed desorption (TPD) is a widely used technique that can provide such information, but a quantitative analysis requires detailed knowledge of the pre-exponential factor of desorption and is therefore rarely performed on a quantitative level for larger molecules that often exhibit notable mutual intermolecular interactions. Here, we provide a thorough anlysis of TPD data of monolayers of pentacene and perfluoropentacene adsorbed on Au(111) that serve as a model system for polycyclic aromatic hydrocarbons adsorbed on noble metal surfaces. We show that the pre-exponential factor varies by several orders of magnitude with the surface coverage and evolves in a step-like fashion due to the sudden activation of a rotational degree of freedom during thermally controlled monolayer desorption. Using complementary coverage-dependent work function measurements, the interface dipole moments were determined. This allows to identify the origin and quantify the relative contributions of the lateral intermolecular interactions, which we modelled by force field calculations. This analysis clearly shows that the main cause for intermolecular repulsion are electrostatic interactions between the intramolecular charge distributions, while interface dipoles play only a minor role. The combination of temperature-programmed desorption with Kelvin probe and STM data allows to quantify and characterize intermolecular interactions in pentacene monolayers adsorbed on gold.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1nr03532k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3815-633X</orcidid><orcidid>https://orcid.org/0000-0001-5579-2568</orcidid><orcidid>https://orcid.org/0000-0001-5203-4163</orcidid><orcidid>https://orcid.org/0000-0003-2237-0953</orcidid><orcidid>https://orcid.org/0000-0003-0323-2440</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2021-08, Vol.13 (32), p.13816-13826
issn 2040-3364
2040-3372
language eng
recordid cdi_rsc_primary_d1nr03532k
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Adsorbates
Algorithms
Desorption
Dipole moments
Gold
Metal surfaces
Molecular structure
Moments of inertia
Monolayers
Multilayers
Noble metals
Photomicrographs
Polycyclic aromatic hydrocarbons
Quantitative analysis
Solid surfaces
Substrates
Thin films
Work functions
title Temperature-programmed desorption of large molecules: influence of thin film structure and origin of intermolecular repulsion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A07%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-programmed%20desorption%20of%20large%20molecules:%20influence%20of%20thin%20film%20structure%20and%20origin%20of%20intermolecular%20repulsion&rft.jtitle=Nanoscale&rft.au=Dombrowski,%20Pierre-Martin&rft.date=2021-08-28&rft.volume=13&rft.issue=32&rft.spage=13816&rft.epage=13826&rft.pages=13816-13826&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d1nr03532k&rft_dat=%3Cproquest_rsc_p%3E2569379421%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-fa245179f084517218ea6ccd97393f4170e7a04c64b9d802cacae8822b250ad83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2562443689&rft_id=info:pmid/&rfr_iscdi=true