Loading…
Synthesis of flower-like manganese oxide for accelerated surface redox reactions on nitrogen-rich graphene of fast charge transport for sustainable aqueous energy storage
The demand for a sustainable energy storage system with high specific power and long cycle life, particularly using an environmentally friendly aqueous electrolyte to eliminate the risk of explosion, is rapidly growing. In this context, water-based asymmetric hybrid capacitors (AHCs), which combine...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-04, Vol.1 (14), p.7668-7676 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c281t-bd6f20c0dc37fb639f60d8e064bb2583c087878367681a8425da4904417ce2083 |
---|---|
cites | cdi_FETCH-LOGICAL-c281t-bd6f20c0dc37fb639f60d8e064bb2583c087878367681a8425da4904417ce2083 |
container_end_page | 7676 |
container_issue | 14 |
container_start_page | 7668 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 1 |
creator | Lim, Jong Hyeong Won, Jong Ho Kim, Mun Kyoung Jung, Dae Soo Kim, Minkyung Park, Chulhwan Koo, Sang-Mo Oh, Jong-Min Jeong, Hyung Mo Sohn, Hiesang Shin, Weon Ho |
description | The demand for a sustainable energy storage system with high specific power and long cycle life, particularly using an environmentally friendly aqueous electrolyte to eliminate the risk of explosion, is rapidly growing. In this context, water-based asymmetric hybrid capacitors (AHCs), which combine the Faraday reaction and the electric double layer phenomenon, have emerged as promising energy storage devices. To obtain high specific energy from such AHCs, a mesoporous transition metal structure and a highly conductive carrier are required. Herein, a flower-like structure of manganese oxide on a nitrogen-doped graphene matrix is synthesized by effectively coordinating a metal cation on the nitrogen sites of a doped graphene matrix. This distinctive synthetic method provides a mesopore-rich and highly conductive structure by combining self-assembly and coordination approaches for effective charge and mass transfer. An AHC constructed using this new material with activated carbon delivers a high specific energy of 36 W h kg
−1
and maintains over 90% of the performance after 10 000 cycles with outstanding coulombic efficiency. By incorporating materials with different behaviors, these AHCs provide an effective ion pathway and high electrical conductivity, achieving high specific energy and stable operation as a real alternative for sustainable energy storage.
The demand for a sustainable energy storage system with high specific power and long cycle life, particularly using an environmentally friendly aqueous electrolyte to eliminate the risk of explosion, is rapidly growing. |
doi_str_mv | 10.1039/d1ta10459d |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d1ta10459d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646908023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-bd6f20c0dc37fb639f60d8e064bb2583c087878367681a8425da4904417ce2083</originalsourceid><addsrcrecordid>eNpFkU1P3DAQhiMEEohy4Y5kqTektHaSdZwj4qOthNRD4RxN7HE2EOztjCPYv9RfWbNbUY_kmcMz74zmLYpzJb8oWXdfnUqgZLPq3EFxUsmVLNum04cftTHHxRnzk8zPSKm77qT482sb0hp5YhG98HN8RSrn6RnFC4QRAjKK-DY5FD6SAGtxRoKETvBCHiwKQhff8g82TTFkmSDClCiOGEqa7FqMBJs1BtwNAE7CroFGFIkg8CZS2knzwgmmAMOMAn4vGBcWuYnGreAUCUb8VBx5mBnP_uXT4vHu9uH6e3n_89uP66v70lZGpXJw2lfSSmfr1g-67ryWzqDUzTBUK1NbadoctW61UWCaauWg6WTTqNZiJU19Wnze624o5kU49U9xoZBH9pVudJdvV9WZutxTliIzoe83NL0AbXsl-3c7-hv1cLWz4ybDF3uY2H5w_-2q_wJL0Ipz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646908023</pqid></control><display><type>article</type><title>Synthesis of flower-like manganese oxide for accelerated surface redox reactions on nitrogen-rich graphene of fast charge transport for sustainable aqueous energy storage</title><source>Royal Society of Chemistry</source><creator>Lim, Jong Hyeong ; Won, Jong Ho ; Kim, Mun Kyoung ; Jung, Dae Soo ; Kim, Minkyung ; Park, Chulhwan ; Koo, Sang-Mo ; Oh, Jong-Min ; Jeong, Hyung Mo ; Sohn, Hiesang ; Shin, Weon Ho</creator><creatorcontrib>Lim, Jong Hyeong ; Won, Jong Ho ; Kim, Mun Kyoung ; Jung, Dae Soo ; Kim, Minkyung ; Park, Chulhwan ; Koo, Sang-Mo ; Oh, Jong-Min ; Jeong, Hyung Mo ; Sohn, Hiesang ; Shin, Weon Ho</creatorcontrib><description>The demand for a sustainable energy storage system with high specific power and long cycle life, particularly using an environmentally friendly aqueous electrolyte to eliminate the risk of explosion, is rapidly growing. In this context, water-based asymmetric hybrid capacitors (AHCs), which combine the Faraday reaction and the electric double layer phenomenon, have emerged as promising energy storage devices. To obtain high specific energy from such AHCs, a mesoporous transition metal structure and a highly conductive carrier are required. Herein, a flower-like structure of manganese oxide on a nitrogen-doped graphene matrix is synthesized by effectively coordinating a metal cation on the nitrogen sites of a doped graphene matrix. This distinctive synthetic method provides a mesopore-rich and highly conductive structure by combining self-assembly and coordination approaches for effective charge and mass transfer. An AHC constructed using this new material with activated carbon delivers a high specific energy of 36 W h kg
−1
and maintains over 90% of the performance after 10 000 cycles with outstanding coulombic efficiency. By incorporating materials with different behaviors, these AHCs provide an effective ion pathway and high electrical conductivity, achieving high specific energy and stable operation as a real alternative for sustainable energy storage.
The demand for a sustainable energy storage system with high specific power and long cycle life, particularly using an environmentally friendly aqueous electrolyte to eliminate the risk of explosion, is rapidly growing.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta10459d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Activated carbon ; Alternative energy sources ; Aqueous electrolytes ; Charge transfer ; Charge transport ; Electric double layer ; Electrical conductivity ; Electrical resistivity ; Energy storage ; Flowers ; Graphene ; Manganese ; Manganese oxides ; Mass transfer ; Metal ions ; Nitrogen ; Redox reactions ; Renewable energy ; Self-assembly ; Sustainability ; Transition metals</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-04, Vol.1 (14), p.7668-7676</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-bd6f20c0dc37fb639f60d8e064bb2583c087878367681a8425da4904417ce2083</citedby><cites>FETCH-LOGICAL-c281t-bd6f20c0dc37fb639f60d8e064bb2583c087878367681a8425da4904417ce2083</cites><orcidid>0000-0002-8190-6255 ; 0000-0003-0487-5480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lim, Jong Hyeong</creatorcontrib><creatorcontrib>Won, Jong Ho</creatorcontrib><creatorcontrib>Kim, Mun Kyoung</creatorcontrib><creatorcontrib>Jung, Dae Soo</creatorcontrib><creatorcontrib>Kim, Minkyung</creatorcontrib><creatorcontrib>Park, Chulhwan</creatorcontrib><creatorcontrib>Koo, Sang-Mo</creatorcontrib><creatorcontrib>Oh, Jong-Min</creatorcontrib><creatorcontrib>Jeong, Hyung Mo</creatorcontrib><creatorcontrib>Sohn, Hiesang</creatorcontrib><creatorcontrib>Shin, Weon Ho</creatorcontrib><title>Synthesis of flower-like manganese oxide for accelerated surface redox reactions on nitrogen-rich graphene of fast charge transport for sustainable aqueous energy storage</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The demand for a sustainable energy storage system with high specific power and long cycle life, particularly using an environmentally friendly aqueous electrolyte to eliminate the risk of explosion, is rapidly growing. In this context, water-based asymmetric hybrid capacitors (AHCs), which combine the Faraday reaction and the electric double layer phenomenon, have emerged as promising energy storage devices. To obtain high specific energy from such AHCs, a mesoporous transition metal structure and a highly conductive carrier are required. Herein, a flower-like structure of manganese oxide on a nitrogen-doped graphene matrix is synthesized by effectively coordinating a metal cation on the nitrogen sites of a doped graphene matrix. This distinctive synthetic method provides a mesopore-rich and highly conductive structure by combining self-assembly and coordination approaches for effective charge and mass transfer. An AHC constructed using this new material with activated carbon delivers a high specific energy of 36 W h kg
−1
and maintains over 90% of the performance after 10 000 cycles with outstanding coulombic efficiency. By incorporating materials with different behaviors, these AHCs provide an effective ion pathway and high electrical conductivity, achieving high specific energy and stable operation as a real alternative for sustainable energy storage.
The demand for a sustainable energy storage system with high specific power and long cycle life, particularly using an environmentally friendly aqueous electrolyte to eliminate the risk of explosion, is rapidly growing.</description><subject>Activated carbon</subject><subject>Alternative energy sources</subject><subject>Aqueous electrolytes</subject><subject>Charge transfer</subject><subject>Charge transport</subject><subject>Electric double layer</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Energy storage</subject><subject>Flowers</subject><subject>Graphene</subject><subject>Manganese</subject><subject>Manganese oxides</subject><subject>Mass transfer</subject><subject>Metal ions</subject><subject>Nitrogen</subject><subject>Redox reactions</subject><subject>Renewable energy</subject><subject>Self-assembly</subject><subject>Sustainability</subject><subject>Transition metals</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkU1P3DAQhiMEEohy4Y5kqTektHaSdZwj4qOthNRD4RxN7HE2EOztjCPYv9RfWbNbUY_kmcMz74zmLYpzJb8oWXdfnUqgZLPq3EFxUsmVLNum04cftTHHxRnzk8zPSKm77qT482sb0hp5YhG98HN8RSrn6RnFC4QRAjKK-DY5FD6SAGtxRoKETvBCHiwKQhff8g82TTFkmSDClCiOGEqa7FqMBJs1BtwNAE7CroFGFIkg8CZS2knzwgmmAMOMAn4vGBcWuYnGreAUCUb8VBx5mBnP_uXT4vHu9uH6e3n_89uP66v70lZGpXJw2lfSSmfr1g-67ryWzqDUzTBUK1NbadoctW61UWCaauWg6WTTqNZiJU19Wnze624o5kU49U9xoZBH9pVudJdvV9WZutxTliIzoe83NL0AbXsl-3c7-hv1cLWz4ybDF3uY2H5w_-2q_wJL0Ipz</recordid><startdate>20220405</startdate><enddate>20220405</enddate><creator>Lim, Jong Hyeong</creator><creator>Won, Jong Ho</creator><creator>Kim, Mun Kyoung</creator><creator>Jung, Dae Soo</creator><creator>Kim, Minkyung</creator><creator>Park, Chulhwan</creator><creator>Koo, Sang-Mo</creator><creator>Oh, Jong-Min</creator><creator>Jeong, Hyung Mo</creator><creator>Sohn, Hiesang</creator><creator>Shin, Weon Ho</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8190-6255</orcidid><orcidid>https://orcid.org/0000-0003-0487-5480</orcidid></search><sort><creationdate>20220405</creationdate><title>Synthesis of flower-like manganese oxide for accelerated surface redox reactions on nitrogen-rich graphene of fast charge transport for sustainable aqueous energy storage</title><author>Lim, Jong Hyeong ; Won, Jong Ho ; Kim, Mun Kyoung ; Jung, Dae Soo ; Kim, Minkyung ; Park, Chulhwan ; Koo, Sang-Mo ; Oh, Jong-Min ; Jeong, Hyung Mo ; Sohn, Hiesang ; Shin, Weon Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-bd6f20c0dc37fb639f60d8e064bb2583c087878367681a8425da4904417ce2083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activated carbon</topic><topic>Alternative energy sources</topic><topic>Aqueous electrolytes</topic><topic>Charge transfer</topic><topic>Charge transport</topic><topic>Electric double layer</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Energy storage</topic><topic>Flowers</topic><topic>Graphene</topic><topic>Manganese</topic><topic>Manganese oxides</topic><topic>Mass transfer</topic><topic>Metal ions</topic><topic>Nitrogen</topic><topic>Redox reactions</topic><topic>Renewable energy</topic><topic>Self-assembly</topic><topic>Sustainability</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Jong Hyeong</creatorcontrib><creatorcontrib>Won, Jong Ho</creatorcontrib><creatorcontrib>Kim, Mun Kyoung</creatorcontrib><creatorcontrib>Jung, Dae Soo</creatorcontrib><creatorcontrib>Kim, Minkyung</creatorcontrib><creatorcontrib>Park, Chulhwan</creatorcontrib><creatorcontrib>Koo, Sang-Mo</creatorcontrib><creatorcontrib>Oh, Jong-Min</creatorcontrib><creatorcontrib>Jeong, Hyung Mo</creatorcontrib><creatorcontrib>Sohn, Hiesang</creatorcontrib><creatorcontrib>Shin, Weon Ho</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Jong Hyeong</au><au>Won, Jong Ho</au><au>Kim, Mun Kyoung</au><au>Jung, Dae Soo</au><au>Kim, Minkyung</au><au>Park, Chulhwan</au><au>Koo, Sang-Mo</au><au>Oh, Jong-Min</au><au>Jeong, Hyung Mo</au><au>Sohn, Hiesang</au><au>Shin, Weon Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of flower-like manganese oxide for accelerated surface redox reactions on nitrogen-rich graphene of fast charge transport for sustainable aqueous energy storage</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-04-05</date><risdate>2022</risdate><volume>1</volume><issue>14</issue><spage>7668</spage><epage>7676</epage><pages>7668-7676</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The demand for a sustainable energy storage system with high specific power and long cycle life, particularly using an environmentally friendly aqueous electrolyte to eliminate the risk of explosion, is rapidly growing. In this context, water-based asymmetric hybrid capacitors (AHCs), which combine the Faraday reaction and the electric double layer phenomenon, have emerged as promising energy storage devices. To obtain high specific energy from such AHCs, a mesoporous transition metal structure and a highly conductive carrier are required. Herein, a flower-like structure of manganese oxide on a nitrogen-doped graphene matrix is synthesized by effectively coordinating a metal cation on the nitrogen sites of a doped graphene matrix. This distinctive synthetic method provides a mesopore-rich and highly conductive structure by combining self-assembly and coordination approaches for effective charge and mass transfer. An AHC constructed using this new material with activated carbon delivers a high specific energy of 36 W h kg
−1
and maintains over 90% of the performance after 10 000 cycles with outstanding coulombic efficiency. By incorporating materials with different behaviors, these AHCs provide an effective ion pathway and high electrical conductivity, achieving high specific energy and stable operation as a real alternative for sustainable energy storage.
The demand for a sustainable energy storage system with high specific power and long cycle life, particularly using an environmentally friendly aqueous electrolyte to eliminate the risk of explosion, is rapidly growing.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta10459d</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8190-6255</orcidid><orcidid>https://orcid.org/0000-0003-0487-5480</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2022-04, Vol.1 (14), p.7668-7676 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_rsc_primary_d1ta10459d |
source | Royal Society of Chemistry |
subjects | Activated carbon Alternative energy sources Aqueous electrolytes Charge transfer Charge transport Electric double layer Electrical conductivity Electrical resistivity Energy storage Flowers Graphene Manganese Manganese oxides Mass transfer Metal ions Nitrogen Redox reactions Renewable energy Self-assembly Sustainability Transition metals |
title | Synthesis of flower-like manganese oxide for accelerated surface redox reactions on nitrogen-rich graphene of fast charge transport for sustainable aqueous energy storage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20flower-like%20manganese%20oxide%20for%20accelerated%20surface%20redox%20reactions%20on%20nitrogen-rich%20graphene%20of%20fast%20charge%20transport%20for%20sustainable%20aqueous%20energy%20storage&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Lim,%20Jong%20Hyeong&rft.date=2022-04-05&rft.volume=1&rft.issue=14&rft.spage=7668&rft.epage=7676&rft.pages=7668-7676&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta10459d&rft_dat=%3Cproquest_rsc_p%3E2646908023%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-bd6f20c0dc37fb639f60d8e064bb2583c087878367681a8425da4904417ce2083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2646908023&rft_id=info:pmid/&rfr_iscdi=true |