Loading…

Synthesis of flower-like manganese oxide for accelerated surface redox reactions on nitrogen-rich graphene of fast charge transport for sustainable aqueous energy storage

The demand for a sustainable energy storage system with high specific power and long cycle life, particularly using an environmentally friendly aqueous electrolyte to eliminate the risk of explosion, is rapidly growing. In this context, water-based asymmetric hybrid capacitors (AHCs), which combine...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-04, Vol.1 (14), p.7668-7676
Main Authors: Lim, Jong Hyeong, Won, Jong Ho, Kim, Mun Kyoung, Jung, Dae Soo, Kim, Minkyung, Park, Chulhwan, Koo, Sang-Mo, Oh, Jong-Min, Jeong, Hyung Mo, Sohn, Hiesang, Shin, Weon Ho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c281t-bd6f20c0dc37fb639f60d8e064bb2583c087878367681a8425da4904417ce2083
cites cdi_FETCH-LOGICAL-c281t-bd6f20c0dc37fb639f60d8e064bb2583c087878367681a8425da4904417ce2083
container_end_page 7676
container_issue 14
container_start_page 7668
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 1
creator Lim, Jong Hyeong
Won, Jong Ho
Kim, Mun Kyoung
Jung, Dae Soo
Kim, Minkyung
Park, Chulhwan
Koo, Sang-Mo
Oh, Jong-Min
Jeong, Hyung Mo
Sohn, Hiesang
Shin, Weon Ho
description The demand for a sustainable energy storage system with high specific power and long cycle life, particularly using an environmentally friendly aqueous electrolyte to eliminate the risk of explosion, is rapidly growing. In this context, water-based asymmetric hybrid capacitors (AHCs), which combine the Faraday reaction and the electric double layer phenomenon, have emerged as promising energy storage devices. To obtain high specific energy from such AHCs, a mesoporous transition metal structure and a highly conductive carrier are required. Herein, a flower-like structure of manganese oxide on a nitrogen-doped graphene matrix is synthesized by effectively coordinating a metal cation on the nitrogen sites of a doped graphene matrix. This distinctive synthetic method provides a mesopore-rich and highly conductive structure by combining self-assembly and coordination approaches for effective charge and mass transfer. An AHC constructed using this new material with activated carbon delivers a high specific energy of 36 W h kg −1 and maintains over 90% of the performance after 10 000 cycles with outstanding coulombic efficiency. By incorporating materials with different behaviors, these AHCs provide an effective ion pathway and high electrical conductivity, achieving high specific energy and stable operation as a real alternative for sustainable energy storage. The demand for a sustainable energy storage system with high specific power and long cycle life, particularly using an environmentally friendly aqueous electrolyte to eliminate the risk of explosion, is rapidly growing.
doi_str_mv 10.1039/d1ta10459d
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d1ta10459d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646908023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-bd6f20c0dc37fb639f60d8e064bb2583c087878367681a8425da4904417ce2083</originalsourceid><addsrcrecordid>eNpFkU1P3DAQhiMEEohy4Y5kqTektHaSdZwj4qOthNRD4RxN7HE2EOztjCPYv9RfWbNbUY_kmcMz74zmLYpzJb8oWXdfnUqgZLPq3EFxUsmVLNum04cftTHHxRnzk8zPSKm77qT482sb0hp5YhG98HN8RSrn6RnFC4QRAjKK-DY5FD6SAGtxRoKETvBCHiwKQhff8g82TTFkmSDClCiOGEqa7FqMBJs1BtwNAE7CroFGFIkg8CZS2knzwgmmAMOMAn4vGBcWuYnGreAUCUb8VBx5mBnP_uXT4vHu9uH6e3n_89uP66v70lZGpXJw2lfSSmfr1g-67ryWzqDUzTBUK1NbadoctW61UWCaauWg6WTTqNZiJU19Wnze624o5kU49U9xoZBH9pVudJdvV9WZutxTliIzoe83NL0AbXsl-3c7-hv1cLWz4ybDF3uY2H5w_-2q_wJL0Ipz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646908023</pqid></control><display><type>article</type><title>Synthesis of flower-like manganese oxide for accelerated surface redox reactions on nitrogen-rich graphene of fast charge transport for sustainable aqueous energy storage</title><source>Royal Society of Chemistry</source><creator>Lim, Jong Hyeong ; Won, Jong Ho ; Kim, Mun Kyoung ; Jung, Dae Soo ; Kim, Minkyung ; Park, Chulhwan ; Koo, Sang-Mo ; Oh, Jong-Min ; Jeong, Hyung Mo ; Sohn, Hiesang ; Shin, Weon Ho</creator><creatorcontrib>Lim, Jong Hyeong ; Won, Jong Ho ; Kim, Mun Kyoung ; Jung, Dae Soo ; Kim, Minkyung ; Park, Chulhwan ; Koo, Sang-Mo ; Oh, Jong-Min ; Jeong, Hyung Mo ; Sohn, Hiesang ; Shin, Weon Ho</creatorcontrib><description>The demand for a sustainable energy storage system with high specific power and long cycle life, particularly using an environmentally friendly aqueous electrolyte to eliminate the risk of explosion, is rapidly growing. In this context, water-based asymmetric hybrid capacitors (AHCs), which combine the Faraday reaction and the electric double layer phenomenon, have emerged as promising energy storage devices. To obtain high specific energy from such AHCs, a mesoporous transition metal structure and a highly conductive carrier are required. Herein, a flower-like structure of manganese oxide on a nitrogen-doped graphene matrix is synthesized by effectively coordinating a metal cation on the nitrogen sites of a doped graphene matrix. This distinctive synthetic method provides a mesopore-rich and highly conductive structure by combining self-assembly and coordination approaches for effective charge and mass transfer. An AHC constructed using this new material with activated carbon delivers a high specific energy of 36 W h kg −1 and maintains over 90% of the performance after 10 000 cycles with outstanding coulombic efficiency. By incorporating materials with different behaviors, these AHCs provide an effective ion pathway and high electrical conductivity, achieving high specific energy and stable operation as a real alternative for sustainable energy storage. The demand for a sustainable energy storage system with high specific power and long cycle life, particularly using an environmentally friendly aqueous electrolyte to eliminate the risk of explosion, is rapidly growing.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta10459d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Activated carbon ; Alternative energy sources ; Aqueous electrolytes ; Charge transfer ; Charge transport ; Electric double layer ; Electrical conductivity ; Electrical resistivity ; Energy storage ; Flowers ; Graphene ; Manganese ; Manganese oxides ; Mass transfer ; Metal ions ; Nitrogen ; Redox reactions ; Renewable energy ; Self-assembly ; Sustainability ; Transition metals</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-04, Vol.1 (14), p.7668-7676</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-bd6f20c0dc37fb639f60d8e064bb2583c087878367681a8425da4904417ce2083</citedby><cites>FETCH-LOGICAL-c281t-bd6f20c0dc37fb639f60d8e064bb2583c087878367681a8425da4904417ce2083</cites><orcidid>0000-0002-8190-6255 ; 0000-0003-0487-5480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lim, Jong Hyeong</creatorcontrib><creatorcontrib>Won, Jong Ho</creatorcontrib><creatorcontrib>Kim, Mun Kyoung</creatorcontrib><creatorcontrib>Jung, Dae Soo</creatorcontrib><creatorcontrib>Kim, Minkyung</creatorcontrib><creatorcontrib>Park, Chulhwan</creatorcontrib><creatorcontrib>Koo, Sang-Mo</creatorcontrib><creatorcontrib>Oh, Jong-Min</creatorcontrib><creatorcontrib>Jeong, Hyung Mo</creatorcontrib><creatorcontrib>Sohn, Hiesang</creatorcontrib><creatorcontrib>Shin, Weon Ho</creatorcontrib><title>Synthesis of flower-like manganese oxide for accelerated surface redox reactions on nitrogen-rich graphene of fast charge transport for sustainable aqueous energy storage</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The demand for a sustainable energy storage system with high specific power and long cycle life, particularly using an environmentally friendly aqueous electrolyte to eliminate the risk of explosion, is rapidly growing. In this context, water-based asymmetric hybrid capacitors (AHCs), which combine the Faraday reaction and the electric double layer phenomenon, have emerged as promising energy storage devices. To obtain high specific energy from such AHCs, a mesoporous transition metal structure and a highly conductive carrier are required. Herein, a flower-like structure of manganese oxide on a nitrogen-doped graphene matrix is synthesized by effectively coordinating a metal cation on the nitrogen sites of a doped graphene matrix. This distinctive synthetic method provides a mesopore-rich and highly conductive structure by combining self-assembly and coordination approaches for effective charge and mass transfer. An AHC constructed using this new material with activated carbon delivers a high specific energy of 36 W h kg −1 and maintains over 90% of the performance after 10 000 cycles with outstanding coulombic efficiency. By incorporating materials with different behaviors, these AHCs provide an effective ion pathway and high electrical conductivity, achieving high specific energy and stable operation as a real alternative for sustainable energy storage. The demand for a sustainable energy storage system with high specific power and long cycle life, particularly using an environmentally friendly aqueous electrolyte to eliminate the risk of explosion, is rapidly growing.</description><subject>Activated carbon</subject><subject>Alternative energy sources</subject><subject>Aqueous electrolytes</subject><subject>Charge transfer</subject><subject>Charge transport</subject><subject>Electric double layer</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Energy storage</subject><subject>Flowers</subject><subject>Graphene</subject><subject>Manganese</subject><subject>Manganese oxides</subject><subject>Mass transfer</subject><subject>Metal ions</subject><subject>Nitrogen</subject><subject>Redox reactions</subject><subject>Renewable energy</subject><subject>Self-assembly</subject><subject>Sustainability</subject><subject>Transition metals</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkU1P3DAQhiMEEohy4Y5kqTektHaSdZwj4qOthNRD4RxN7HE2EOztjCPYv9RfWbNbUY_kmcMz74zmLYpzJb8oWXdfnUqgZLPq3EFxUsmVLNum04cftTHHxRnzk8zPSKm77qT482sb0hp5YhG98HN8RSrn6RnFC4QRAjKK-DY5FD6SAGtxRoKETvBCHiwKQhff8g82TTFkmSDClCiOGEqa7FqMBJs1BtwNAE7CroFGFIkg8CZS2knzwgmmAMOMAn4vGBcWuYnGreAUCUb8VBx5mBnP_uXT4vHu9uH6e3n_89uP66v70lZGpXJw2lfSSmfr1g-67ryWzqDUzTBUK1NbadoctW61UWCaauWg6WTTqNZiJU19Wnze624o5kU49U9xoZBH9pVudJdvV9WZutxTliIzoe83NL0AbXsl-3c7-hv1cLWz4ybDF3uY2H5w_-2q_wJL0Ipz</recordid><startdate>20220405</startdate><enddate>20220405</enddate><creator>Lim, Jong Hyeong</creator><creator>Won, Jong Ho</creator><creator>Kim, Mun Kyoung</creator><creator>Jung, Dae Soo</creator><creator>Kim, Minkyung</creator><creator>Park, Chulhwan</creator><creator>Koo, Sang-Mo</creator><creator>Oh, Jong-Min</creator><creator>Jeong, Hyung Mo</creator><creator>Sohn, Hiesang</creator><creator>Shin, Weon Ho</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8190-6255</orcidid><orcidid>https://orcid.org/0000-0003-0487-5480</orcidid></search><sort><creationdate>20220405</creationdate><title>Synthesis of flower-like manganese oxide for accelerated surface redox reactions on nitrogen-rich graphene of fast charge transport for sustainable aqueous energy storage</title><author>Lim, Jong Hyeong ; Won, Jong Ho ; Kim, Mun Kyoung ; Jung, Dae Soo ; Kim, Minkyung ; Park, Chulhwan ; Koo, Sang-Mo ; Oh, Jong-Min ; Jeong, Hyung Mo ; Sohn, Hiesang ; Shin, Weon Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-bd6f20c0dc37fb639f60d8e064bb2583c087878367681a8425da4904417ce2083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activated carbon</topic><topic>Alternative energy sources</topic><topic>Aqueous electrolytes</topic><topic>Charge transfer</topic><topic>Charge transport</topic><topic>Electric double layer</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Energy storage</topic><topic>Flowers</topic><topic>Graphene</topic><topic>Manganese</topic><topic>Manganese oxides</topic><topic>Mass transfer</topic><topic>Metal ions</topic><topic>Nitrogen</topic><topic>Redox reactions</topic><topic>Renewable energy</topic><topic>Self-assembly</topic><topic>Sustainability</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Jong Hyeong</creatorcontrib><creatorcontrib>Won, Jong Ho</creatorcontrib><creatorcontrib>Kim, Mun Kyoung</creatorcontrib><creatorcontrib>Jung, Dae Soo</creatorcontrib><creatorcontrib>Kim, Minkyung</creatorcontrib><creatorcontrib>Park, Chulhwan</creatorcontrib><creatorcontrib>Koo, Sang-Mo</creatorcontrib><creatorcontrib>Oh, Jong-Min</creatorcontrib><creatorcontrib>Jeong, Hyung Mo</creatorcontrib><creatorcontrib>Sohn, Hiesang</creatorcontrib><creatorcontrib>Shin, Weon Ho</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Jong Hyeong</au><au>Won, Jong Ho</au><au>Kim, Mun Kyoung</au><au>Jung, Dae Soo</au><au>Kim, Minkyung</au><au>Park, Chulhwan</au><au>Koo, Sang-Mo</au><au>Oh, Jong-Min</au><au>Jeong, Hyung Mo</au><au>Sohn, Hiesang</au><au>Shin, Weon Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of flower-like manganese oxide for accelerated surface redox reactions on nitrogen-rich graphene of fast charge transport for sustainable aqueous energy storage</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-04-05</date><risdate>2022</risdate><volume>1</volume><issue>14</issue><spage>7668</spage><epage>7676</epage><pages>7668-7676</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The demand for a sustainable energy storage system with high specific power and long cycle life, particularly using an environmentally friendly aqueous electrolyte to eliminate the risk of explosion, is rapidly growing. In this context, water-based asymmetric hybrid capacitors (AHCs), which combine the Faraday reaction and the electric double layer phenomenon, have emerged as promising energy storage devices. To obtain high specific energy from such AHCs, a mesoporous transition metal structure and a highly conductive carrier are required. Herein, a flower-like structure of manganese oxide on a nitrogen-doped graphene matrix is synthesized by effectively coordinating a metal cation on the nitrogen sites of a doped graphene matrix. This distinctive synthetic method provides a mesopore-rich and highly conductive structure by combining self-assembly and coordination approaches for effective charge and mass transfer. An AHC constructed using this new material with activated carbon delivers a high specific energy of 36 W h kg −1 and maintains over 90% of the performance after 10 000 cycles with outstanding coulombic efficiency. By incorporating materials with different behaviors, these AHCs provide an effective ion pathway and high electrical conductivity, achieving high specific energy and stable operation as a real alternative for sustainable energy storage. The demand for a sustainable energy storage system with high specific power and long cycle life, particularly using an environmentally friendly aqueous electrolyte to eliminate the risk of explosion, is rapidly growing.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta10459d</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8190-6255</orcidid><orcidid>https://orcid.org/0000-0003-0487-5480</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2022-04, Vol.1 (14), p.7668-7676
issn 2050-7488
2050-7496
language eng
recordid cdi_rsc_primary_d1ta10459d
source Royal Society of Chemistry
subjects Activated carbon
Alternative energy sources
Aqueous electrolytes
Charge transfer
Charge transport
Electric double layer
Electrical conductivity
Electrical resistivity
Energy storage
Flowers
Graphene
Manganese
Manganese oxides
Mass transfer
Metal ions
Nitrogen
Redox reactions
Renewable energy
Self-assembly
Sustainability
Transition metals
title Synthesis of flower-like manganese oxide for accelerated surface redox reactions on nitrogen-rich graphene of fast charge transport for sustainable aqueous energy storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20flower-like%20manganese%20oxide%20for%20accelerated%20surface%20redox%20reactions%20on%20nitrogen-rich%20graphene%20of%20fast%20charge%20transport%20for%20sustainable%20aqueous%20energy%20storage&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Lim,%20Jong%20Hyeong&rft.date=2022-04-05&rft.volume=1&rft.issue=14&rft.spage=7668&rft.epage=7676&rft.pages=7668-7676&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta10459d&rft_dat=%3Cproquest_rsc_p%3E2646908023%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-bd6f20c0dc37fb639f60d8e064bb2583c087878367681a8425da4904417ce2083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2646908023&rft_id=info:pmid/&rfr_iscdi=true