Loading…
nablaDFT: Large-Scale Conformational Energy and Hamiltonian Prediction benchmark and dataset
Electronic wave function calculation is a fundamental task of computational quantum chemistry. Knowledge of the wave function parameters allows one to compute physical and chemical properties of molecules and materials. Unfortunately, it is infeasible to compute the wave functions analytically even...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2022-11, Vol.24 (42), p.25853-25863 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c314t-939b255a86eb3692a5ddbd940bb47c19d63a46b5130bd9909d2230820ae2ac663 |
---|---|
cites | cdi_FETCH-LOGICAL-c314t-939b255a86eb3692a5ddbd940bb47c19d63a46b5130bd9909d2230820ae2ac663 |
container_end_page | 25863 |
container_issue | 42 |
container_start_page | 25853 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 24 |
creator | Khrabrov, Kuzma Shenbin, Ilya Ryabov, Alexander Tsypin, Artem Telepov, Alexander Alekseev, Anton Grishin, Alexander Strashnov, Pavel Zhilyaev, Petr Nikolenko, Sergey Kadurin, Artur |
description | Electronic wave function calculation is a fundamental task of computational quantum chemistry. Knowledge of the wave function parameters allows one to compute physical and chemical properties of molecules and materials. Unfortunately, it is infeasible to compute the wave functions analytically even for simple molecules. Classical quantum chemistry approaches such as the Hartree-Fock method or density functional theory (DFT) allow to compute an approximation of the wave function but are very computationally expensive. One way to lower the computational complexity is to use machine learning models that can provide sufficiently good approximations at a much lower computational cost. In this work we: (1) introduce a new curated large-scale dataset of electron structures of drug-like molecules, (2) establish a novel benchmark for the estimation of molecular properties in the multi-molecule setting, and (3) evaluate a wide range of methods with this benchmark. We show that the accuracy of recently developed machine learning models deteriorates significantly when switching from the single-molecule to the multi-molecule setting. We also show that these models lack generalization over different chemistry classes. In addition, we provide experimental evidence that larger datasets lead to better ML models in the field of quantum chemistry.
In this work we present nablaDFT, the new dataset and benchmark for the Density Functional Theory Hamiltonian and energy prediction. We provide data for over 1 million different molecules and over 5 million conformations and baseline models for both tasks. |
doi_str_mv | 10.1039/d2cp03966d |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d2cp03966d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2730997479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-939b255a86eb3692a5ddbd940bb47c19d63a46b5130bd9909d2230820ae2ac663</originalsourceid><addsrcrecordid>eNpd0UtLw0AQAOAgCtbqxbsQ8CJCdF_ZdL1J2lqhYMF6E8LsozU12a276aH_3q2VCp5mGD6GeSTJJUZ3GFFxr4lax8i5Pkp6mHGaCTRgx4e84KfJWQgrhBDOMe0l7xZkA8Px_CGdgl-a7FVBY9LS2YXzLXS1s9CkI2v8cpuC1ekE2rrpnK3BpjNvdK12JpXGqo8W_OcP0tBBMN15crKAJpiL39hP3sajeTnJpi9Pz-XjNFMUsy4TVEiS5zDgRlIuCORaSy0YkpIVCgvNKTAu47wolgUSmhCKBgSBIaA4p_3kZt937d3XxoSuauugTNOANW4TKlKQAWYFYTjS63905TY-7rhTFAlRsEJEdbtXyrsQvFlUa1_H7bYVRtXu0NWQlLOfQw8jvtpjH9TB_T2CfgNVz3kZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2730997479</pqid></control><display><type>article</type><title>nablaDFT: Large-Scale Conformational Energy and Hamiltonian Prediction benchmark and dataset</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Khrabrov, Kuzma ; Shenbin, Ilya ; Ryabov, Alexander ; Tsypin, Artem ; Telepov, Alexander ; Alekseev, Anton ; Grishin, Alexander ; Strashnov, Pavel ; Zhilyaev, Petr ; Nikolenko, Sergey ; Kadurin, Artur</creator><creatorcontrib>Khrabrov, Kuzma ; Shenbin, Ilya ; Ryabov, Alexander ; Tsypin, Artem ; Telepov, Alexander ; Alekseev, Anton ; Grishin, Alexander ; Strashnov, Pavel ; Zhilyaev, Petr ; Nikolenko, Sergey ; Kadurin, Artur</creatorcontrib><description>Electronic wave function calculation is a fundamental task of computational quantum chemistry. Knowledge of the wave function parameters allows one to compute physical and chemical properties of molecules and materials. Unfortunately, it is infeasible to compute the wave functions analytically even for simple molecules. Classical quantum chemistry approaches such as the Hartree-Fock method or density functional theory (DFT) allow to compute an approximation of the wave function but are very computationally expensive. One way to lower the computational complexity is to use machine learning models that can provide sufficiently good approximations at a much lower computational cost. In this work we: (1) introduce a new curated large-scale dataset of electron structures of drug-like molecules, (2) establish a novel benchmark for the estimation of molecular properties in the multi-molecule setting, and (3) evaluate a wide range of methods with this benchmark. We show that the accuracy of recently developed machine learning models deteriorates significantly when switching from the single-molecule to the multi-molecule setting. We also show that these models lack generalization over different chemistry classes. In addition, we provide experimental evidence that larger datasets lead to better ML models in the field of quantum chemistry.
In this work we present nablaDFT, the new dataset and benchmark for the Density Functional Theory Hamiltonian and energy prediction. We provide data for over 1 million different molecules and over 5 million conformations and baseline models for both tasks.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp03966d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Approximation ; Benchmarks ; Chemical properties ; Chemistry ; Computing costs ; Datasets ; Density functional theory ; Machine learning ; Quantum chemistry ; Wave functions</subject><ispartof>Physical chemistry chemical physics : PCCP, 2022-11, Vol.24 (42), p.25853-25863</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-939b255a86eb3692a5ddbd940bb47c19d63a46b5130bd9909d2230820ae2ac663</citedby><cites>FETCH-LOGICAL-c314t-939b255a86eb3692a5ddbd940bb47c19d63a46b5130bd9909d2230820ae2ac663</cites><orcidid>0000-0001-6953-8317 ; 0000-0002-0754-759X ; 0000-0002-6778-225X ; 0000-0002-7280-1531 ; 0000-0001-6456-3329 ; 0000-0001-5001-146X ; 0000-0001-9662-6128 ; 0000-0001-7787-2251 ; 0000-0003-1482-9365 ; 0000-0002-0446-6751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Khrabrov, Kuzma</creatorcontrib><creatorcontrib>Shenbin, Ilya</creatorcontrib><creatorcontrib>Ryabov, Alexander</creatorcontrib><creatorcontrib>Tsypin, Artem</creatorcontrib><creatorcontrib>Telepov, Alexander</creatorcontrib><creatorcontrib>Alekseev, Anton</creatorcontrib><creatorcontrib>Grishin, Alexander</creatorcontrib><creatorcontrib>Strashnov, Pavel</creatorcontrib><creatorcontrib>Zhilyaev, Petr</creatorcontrib><creatorcontrib>Nikolenko, Sergey</creatorcontrib><creatorcontrib>Kadurin, Artur</creatorcontrib><title>nablaDFT: Large-Scale Conformational Energy and Hamiltonian Prediction benchmark and dataset</title><title>Physical chemistry chemical physics : PCCP</title><description>Electronic wave function calculation is a fundamental task of computational quantum chemistry. Knowledge of the wave function parameters allows one to compute physical and chemical properties of molecules and materials. Unfortunately, it is infeasible to compute the wave functions analytically even for simple molecules. Classical quantum chemistry approaches such as the Hartree-Fock method or density functional theory (DFT) allow to compute an approximation of the wave function but are very computationally expensive. One way to lower the computational complexity is to use machine learning models that can provide sufficiently good approximations at a much lower computational cost. In this work we: (1) introduce a new curated large-scale dataset of electron structures of drug-like molecules, (2) establish a novel benchmark for the estimation of molecular properties in the multi-molecule setting, and (3) evaluate a wide range of methods with this benchmark. We show that the accuracy of recently developed machine learning models deteriorates significantly when switching from the single-molecule to the multi-molecule setting. We also show that these models lack generalization over different chemistry classes. In addition, we provide experimental evidence that larger datasets lead to better ML models in the field of quantum chemistry.
In this work we present nablaDFT, the new dataset and benchmark for the Density Functional Theory Hamiltonian and energy prediction. We provide data for over 1 million different molecules and over 5 million conformations and baseline models for both tasks.</description><subject>Approximation</subject><subject>Benchmarks</subject><subject>Chemical properties</subject><subject>Chemistry</subject><subject>Computing costs</subject><subject>Datasets</subject><subject>Density functional theory</subject><subject>Machine learning</subject><subject>Quantum chemistry</subject><subject>Wave functions</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0UtLw0AQAOAgCtbqxbsQ8CJCdF_ZdL1J2lqhYMF6E8LsozU12a276aH_3q2VCp5mGD6GeSTJJUZ3GFFxr4lax8i5Pkp6mHGaCTRgx4e84KfJWQgrhBDOMe0l7xZkA8Px_CGdgl-a7FVBY9LS2YXzLXS1s9CkI2v8cpuC1ekE2rrpnK3BpjNvdK12JpXGqo8W_OcP0tBBMN15crKAJpiL39hP3sajeTnJpi9Pz-XjNFMUsy4TVEiS5zDgRlIuCORaSy0YkpIVCgvNKTAu47wolgUSmhCKBgSBIaA4p_3kZt937d3XxoSuauugTNOANW4TKlKQAWYFYTjS63905TY-7rhTFAlRsEJEdbtXyrsQvFlUa1_H7bYVRtXu0NWQlLOfQw8jvtpjH9TB_T2CfgNVz3kZ</recordid><startdate>20221102</startdate><enddate>20221102</enddate><creator>Khrabrov, Kuzma</creator><creator>Shenbin, Ilya</creator><creator>Ryabov, Alexander</creator><creator>Tsypin, Artem</creator><creator>Telepov, Alexander</creator><creator>Alekseev, Anton</creator><creator>Grishin, Alexander</creator><creator>Strashnov, Pavel</creator><creator>Zhilyaev, Petr</creator><creator>Nikolenko, Sergey</creator><creator>Kadurin, Artur</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6953-8317</orcidid><orcidid>https://orcid.org/0000-0002-0754-759X</orcidid><orcidid>https://orcid.org/0000-0002-6778-225X</orcidid><orcidid>https://orcid.org/0000-0002-7280-1531</orcidid><orcidid>https://orcid.org/0000-0001-6456-3329</orcidid><orcidid>https://orcid.org/0000-0001-5001-146X</orcidid><orcidid>https://orcid.org/0000-0001-9662-6128</orcidid><orcidid>https://orcid.org/0000-0001-7787-2251</orcidid><orcidid>https://orcid.org/0000-0003-1482-9365</orcidid><orcidid>https://orcid.org/0000-0002-0446-6751</orcidid></search><sort><creationdate>20221102</creationdate><title>nablaDFT: Large-Scale Conformational Energy and Hamiltonian Prediction benchmark and dataset</title><author>Khrabrov, Kuzma ; Shenbin, Ilya ; Ryabov, Alexander ; Tsypin, Artem ; Telepov, Alexander ; Alekseev, Anton ; Grishin, Alexander ; Strashnov, Pavel ; Zhilyaev, Petr ; Nikolenko, Sergey ; Kadurin, Artur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-939b255a86eb3692a5ddbd940bb47c19d63a46b5130bd9909d2230820ae2ac663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Benchmarks</topic><topic>Chemical properties</topic><topic>Chemistry</topic><topic>Computing costs</topic><topic>Datasets</topic><topic>Density functional theory</topic><topic>Machine learning</topic><topic>Quantum chemistry</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khrabrov, Kuzma</creatorcontrib><creatorcontrib>Shenbin, Ilya</creatorcontrib><creatorcontrib>Ryabov, Alexander</creatorcontrib><creatorcontrib>Tsypin, Artem</creatorcontrib><creatorcontrib>Telepov, Alexander</creatorcontrib><creatorcontrib>Alekseev, Anton</creatorcontrib><creatorcontrib>Grishin, Alexander</creatorcontrib><creatorcontrib>Strashnov, Pavel</creatorcontrib><creatorcontrib>Zhilyaev, Petr</creatorcontrib><creatorcontrib>Nikolenko, Sergey</creatorcontrib><creatorcontrib>Kadurin, Artur</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khrabrov, Kuzma</au><au>Shenbin, Ilya</au><au>Ryabov, Alexander</au><au>Tsypin, Artem</au><au>Telepov, Alexander</au><au>Alekseev, Anton</au><au>Grishin, Alexander</au><au>Strashnov, Pavel</au><au>Zhilyaev, Petr</au><au>Nikolenko, Sergey</au><au>Kadurin, Artur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>nablaDFT: Large-Scale Conformational Energy and Hamiltonian Prediction benchmark and dataset</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2022-11-02</date><risdate>2022</risdate><volume>24</volume><issue>42</issue><spage>25853</spage><epage>25863</epage><pages>25853-25863</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Electronic wave function calculation is a fundamental task of computational quantum chemistry. Knowledge of the wave function parameters allows one to compute physical and chemical properties of molecules and materials. Unfortunately, it is infeasible to compute the wave functions analytically even for simple molecules. Classical quantum chemistry approaches such as the Hartree-Fock method or density functional theory (DFT) allow to compute an approximation of the wave function but are very computationally expensive. One way to lower the computational complexity is to use machine learning models that can provide sufficiently good approximations at a much lower computational cost. In this work we: (1) introduce a new curated large-scale dataset of electron structures of drug-like molecules, (2) establish a novel benchmark for the estimation of molecular properties in the multi-molecule setting, and (3) evaluate a wide range of methods with this benchmark. We show that the accuracy of recently developed machine learning models deteriorates significantly when switching from the single-molecule to the multi-molecule setting. We also show that these models lack generalization over different chemistry classes. In addition, we provide experimental evidence that larger datasets lead to better ML models in the field of quantum chemistry.
In this work we present nablaDFT, the new dataset and benchmark for the Density Functional Theory Hamiltonian and energy prediction. We provide data for over 1 million different molecules and over 5 million conformations and baseline models for both tasks.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2cp03966d</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6953-8317</orcidid><orcidid>https://orcid.org/0000-0002-0754-759X</orcidid><orcidid>https://orcid.org/0000-0002-6778-225X</orcidid><orcidid>https://orcid.org/0000-0002-7280-1531</orcidid><orcidid>https://orcid.org/0000-0001-6456-3329</orcidid><orcidid>https://orcid.org/0000-0001-5001-146X</orcidid><orcidid>https://orcid.org/0000-0001-9662-6128</orcidid><orcidid>https://orcid.org/0000-0001-7787-2251</orcidid><orcidid>https://orcid.org/0000-0003-1482-9365</orcidid><orcidid>https://orcid.org/0000-0002-0446-6751</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2022-11, Vol.24 (42), p.25853-25863 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_rsc_primary_d2cp03966d |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Approximation Benchmarks Chemical properties Chemistry Computing costs Datasets Density functional theory Machine learning Quantum chemistry Wave functions |
title | nablaDFT: Large-Scale Conformational Energy and Hamiltonian Prediction benchmark and dataset |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A57%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=nablaDFT:%20Large-Scale%20Conformational%20Energy%20and%20Hamiltonian%20Prediction%20benchmark%20and%20dataset&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Khrabrov,%20Kuzma&rft.date=2022-11-02&rft.volume=24&rft.issue=42&rft.spage=25853&rft.epage=25863&rft.pages=25853-25863&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp03966d&rft_dat=%3Cproquest_rsc_p%3E2730997479%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-939b255a86eb3692a5ddbd940bb47c19d63a46b5130bd9909d2230820ae2ac663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2730997479&rft_id=info:pmid/&rfr_iscdi=true |