Loading…
Gas-phase grafting for the multifunctional surface modification of silicon quantum dots
Photon upconversion in systems incorporating inorganic quantum dots (QDs) is of great interest for applications in solar energy conversion, bioimaging, and photodynamic therapy. Achieving high up-conversion efficiency requires not only high-quality inorganic nanoparticles, but also precise control o...
Saved in:
Published in: | Nanoscale 2022-12, Vol.14 (46), p.17385-17391 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c314t-331fb2d81e8fd9ce26fe8f0a6d4e5873970897f1ea8580ca31b98cedb30a91833 |
---|---|
cites | cdi_FETCH-LOGICAL-c314t-331fb2d81e8fd9ce26fe8f0a6d4e5873970897f1ea8580ca31b98cedb30a91833 |
container_end_page | 17391 |
container_issue | 46 |
container_start_page | 17385 |
container_title | Nanoscale |
container_volume | 14 |
creator | Schwan, Joseph Wang, Kefu Tang, Ming Lee Mangolini, Lorenzo |
description | Photon upconversion in systems incorporating inorganic quantum dots (QDs) is of great interest for applications in solar energy conversion, bioimaging, and photodynamic therapy. Achieving high up-conversion efficiency requires not only high-quality inorganic nanoparticles, but also precise control of their surface functional groups. Gas-phase surface functionalization provides a new pathway towards controlling the surface of small inorganic nanoparticles. In this contribution, we utilize a one-step low-temperature plasma technique for the synthesis and in-flight partial functionalization of silicon QDs with alkyl chains. The partially functionalized surface is then modified further with 9-vinylanthracene
via
thermal hydrosilylation resulting in the grafting of 9-ethylanthracene (9EA) groups. We have found that the minimum alkyl ligand density necessary for quantum dot solubility also gives the maximum upconversion quantum yield, reaching 17% for silicon QDs with Si-dodecyl chains and an average of 3 9EA molecules per particle.
Gas-phase modification of silicon quantum dots enables a precise control of their surface functional groups, in turn enabling high photon upconversion efficiency. |
doi_str_mv | 10.1039/d2nr04902c |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d2nr04902c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737117882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-331fb2d81e8fd9ce26fe8f0a6d4e5873970897f1ea8580ca31b98cedb30a91833</originalsourceid><addsrcrecordid>eNpdkc1LAzEQxYMoWKsX70LAiwirSWa7mxylahWKgigelzSbtCnbTZuPg_-9qZUKXmYejx_DzBuEzim5oQTEbct6T0pBmDpAA0ZKUgDU7HCvq_IYnYSwJKQSUMEAfU5kKNYLGTSee2mi7efYOI_jQuNV6qI1qVfRul52OCRvpMq-a62xSm5t7AwOtrMqy02SfUwr3LoYTtGRkV3QZ799iD4eH97HT8X0dfI8vpsWCmgZ80bUzFjLqeamFUqzymRFZNWWesRrEDXhojZUSz7iREmgM8GVbmdApKAcYIiudnPX3m2SDrFZ2aB018leuxQaVkNNac05y-jlP3Tpks-HbakSRpALzdT1jlLeheC1adberqT_aihpthk39-zl7SfjcYYvdrAPas_9_QC-AZHneR4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2743537431</pqid></control><display><type>article</type><title>Gas-phase grafting for the multifunctional surface modification of silicon quantum dots</title><source>Royal Society of Chemistry Journals</source><creator>Schwan, Joseph ; Wang, Kefu ; Tang, Ming Lee ; Mangolini, Lorenzo</creator><creatorcontrib>Schwan, Joseph ; Wang, Kefu ; Tang, Ming Lee ; Mangolini, Lorenzo</creatorcontrib><description>Photon upconversion in systems incorporating inorganic quantum dots (QDs) is of great interest for applications in solar energy conversion, bioimaging, and photodynamic therapy. Achieving high up-conversion efficiency requires not only high-quality inorganic nanoparticles, but also precise control of their surface functional groups. Gas-phase surface functionalization provides a new pathway towards controlling the surface of small inorganic nanoparticles. In this contribution, we utilize a one-step low-temperature plasma technique for the synthesis and in-flight partial functionalization of silicon QDs with alkyl chains. The partially functionalized surface is then modified further with 9-vinylanthracene
via
thermal hydrosilylation resulting in the grafting of 9-ethylanthracene (9EA) groups. We have found that the minimum alkyl ligand density necessary for quantum dot solubility also gives the maximum upconversion quantum yield, reaching 17% for silicon QDs with Si-dodecyl chains and an average of 3 9EA molecules per particle.
Gas-phase modification of silicon quantum dots enables a precise control of their surface functional groups, in turn enabling high photon upconversion efficiency.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d2nr04902c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chains ; Functional groups ; Grafting ; Hydrosilylation ; Low temperature ; Medical imaging ; Nanoparticles ; Photodynamic therapy ; Quantum dots ; Silicon ; Solar energy conversion ; Upconversion</subject><ispartof>Nanoscale, 2022-12, Vol.14 (46), p.17385-17391</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-331fb2d81e8fd9ce26fe8f0a6d4e5873970897f1ea8580ca31b98cedb30a91833</citedby><cites>FETCH-LOGICAL-c314t-331fb2d81e8fd9ce26fe8f0a6d4e5873970897f1ea8580ca31b98cedb30a91833</cites><orcidid>0000-0002-0057-2450 ; 0000-0002-7642-2598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Schwan, Joseph</creatorcontrib><creatorcontrib>Wang, Kefu</creatorcontrib><creatorcontrib>Tang, Ming Lee</creatorcontrib><creatorcontrib>Mangolini, Lorenzo</creatorcontrib><title>Gas-phase grafting for the multifunctional surface modification of silicon quantum dots</title><title>Nanoscale</title><description>Photon upconversion in systems incorporating inorganic quantum dots (QDs) is of great interest for applications in solar energy conversion, bioimaging, and photodynamic therapy. Achieving high up-conversion efficiency requires not only high-quality inorganic nanoparticles, but also precise control of their surface functional groups. Gas-phase surface functionalization provides a new pathway towards controlling the surface of small inorganic nanoparticles. In this contribution, we utilize a one-step low-temperature plasma technique for the synthesis and in-flight partial functionalization of silicon QDs with alkyl chains. The partially functionalized surface is then modified further with 9-vinylanthracene
via
thermal hydrosilylation resulting in the grafting of 9-ethylanthracene (9EA) groups. We have found that the minimum alkyl ligand density necessary for quantum dot solubility also gives the maximum upconversion quantum yield, reaching 17% for silicon QDs with Si-dodecyl chains and an average of 3 9EA molecules per particle.
Gas-phase modification of silicon quantum dots enables a precise control of their surface functional groups, in turn enabling high photon upconversion efficiency.</description><subject>Chains</subject><subject>Functional groups</subject><subject>Grafting</subject><subject>Hydrosilylation</subject><subject>Low temperature</subject><subject>Medical imaging</subject><subject>Nanoparticles</subject><subject>Photodynamic therapy</subject><subject>Quantum dots</subject><subject>Silicon</subject><subject>Solar energy conversion</subject><subject>Upconversion</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LAzEQxYMoWKsX70LAiwirSWa7mxylahWKgigelzSbtCnbTZuPg_-9qZUKXmYejx_DzBuEzim5oQTEbct6T0pBmDpAA0ZKUgDU7HCvq_IYnYSwJKQSUMEAfU5kKNYLGTSee2mi7efYOI_jQuNV6qI1qVfRul52OCRvpMq-a62xSm5t7AwOtrMqy02SfUwr3LoYTtGRkV3QZ799iD4eH97HT8X0dfI8vpsWCmgZ80bUzFjLqeamFUqzymRFZNWWesRrEDXhojZUSz7iREmgM8GVbmdApKAcYIiudnPX3m2SDrFZ2aB018leuxQaVkNNac05y-jlP3Tpks-HbakSRpALzdT1jlLeheC1adberqT_aihpthk39-zl7SfjcYYvdrAPas_9_QC-AZHneR4</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Schwan, Joseph</creator><creator>Wang, Kefu</creator><creator>Tang, Ming Lee</creator><creator>Mangolini, Lorenzo</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0057-2450</orcidid><orcidid>https://orcid.org/0000-0002-7642-2598</orcidid></search><sort><creationdate>20221201</creationdate><title>Gas-phase grafting for the multifunctional surface modification of silicon quantum dots</title><author>Schwan, Joseph ; Wang, Kefu ; Tang, Ming Lee ; Mangolini, Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-331fb2d81e8fd9ce26fe8f0a6d4e5873970897f1ea8580ca31b98cedb30a91833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chains</topic><topic>Functional groups</topic><topic>Grafting</topic><topic>Hydrosilylation</topic><topic>Low temperature</topic><topic>Medical imaging</topic><topic>Nanoparticles</topic><topic>Photodynamic therapy</topic><topic>Quantum dots</topic><topic>Silicon</topic><topic>Solar energy conversion</topic><topic>Upconversion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwan, Joseph</creatorcontrib><creatorcontrib>Wang, Kefu</creatorcontrib><creatorcontrib>Tang, Ming Lee</creatorcontrib><creatorcontrib>Mangolini, Lorenzo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwan, Joseph</au><au>Wang, Kefu</au><au>Tang, Ming Lee</au><au>Mangolini, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas-phase grafting for the multifunctional surface modification of silicon quantum dots</atitle><jtitle>Nanoscale</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>14</volume><issue>46</issue><spage>17385</spage><epage>17391</epage><pages>17385-17391</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Photon upconversion in systems incorporating inorganic quantum dots (QDs) is of great interest for applications in solar energy conversion, bioimaging, and photodynamic therapy. Achieving high up-conversion efficiency requires not only high-quality inorganic nanoparticles, but also precise control of their surface functional groups. Gas-phase surface functionalization provides a new pathway towards controlling the surface of small inorganic nanoparticles. In this contribution, we utilize a one-step low-temperature plasma technique for the synthesis and in-flight partial functionalization of silicon QDs with alkyl chains. The partially functionalized surface is then modified further with 9-vinylanthracene
via
thermal hydrosilylation resulting in the grafting of 9-ethylanthracene (9EA) groups. We have found that the minimum alkyl ligand density necessary for quantum dot solubility also gives the maximum upconversion quantum yield, reaching 17% for silicon QDs with Si-dodecyl chains and an average of 3 9EA molecules per particle.
Gas-phase modification of silicon quantum dots enables a precise control of their surface functional groups, in turn enabling high photon upconversion efficiency.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2nr04902c</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0057-2450</orcidid><orcidid>https://orcid.org/0000-0002-7642-2598</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2022-12, Vol.14 (46), p.17385-17391 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_rsc_primary_d2nr04902c |
source | Royal Society of Chemistry Journals |
subjects | Chains Functional groups Grafting Hydrosilylation Low temperature Medical imaging Nanoparticles Photodynamic therapy Quantum dots Silicon Solar energy conversion Upconversion |
title | Gas-phase grafting for the multifunctional surface modification of silicon quantum dots |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas-phase%20grafting%20for%20the%20multifunctional%20surface%20modification%20of%20silicon%20quantum%20dots&rft.jtitle=Nanoscale&rft.au=Schwan,%20Joseph&rft.date=2022-12-01&rft.volume=14&rft.issue=46&rft.spage=17385&rft.epage=17391&rft.pages=17385-17391&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d2nr04902c&rft_dat=%3Cproquest_rsc_p%3E2737117882%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-331fb2d81e8fd9ce26fe8f0a6d4e5873970897f1ea8580ca31b98cedb30a91833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2743537431&rft_id=info:pmid/&rfr_iscdi=true |