Loading…

Gas-phase grafting for the multifunctional surface modification of silicon quantum dots

Photon upconversion in systems incorporating inorganic quantum dots (QDs) is of great interest for applications in solar energy conversion, bioimaging, and photodynamic therapy. Achieving high up-conversion efficiency requires not only high-quality inorganic nanoparticles, but also precise control o...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2022-12, Vol.14 (46), p.17385-17391
Main Authors: Schwan, Joseph, Wang, Kefu, Tang, Ming Lee, Mangolini, Lorenzo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c314t-331fb2d81e8fd9ce26fe8f0a6d4e5873970897f1ea8580ca31b98cedb30a91833
cites cdi_FETCH-LOGICAL-c314t-331fb2d81e8fd9ce26fe8f0a6d4e5873970897f1ea8580ca31b98cedb30a91833
container_end_page 17391
container_issue 46
container_start_page 17385
container_title Nanoscale
container_volume 14
creator Schwan, Joseph
Wang, Kefu
Tang, Ming Lee
Mangolini, Lorenzo
description Photon upconversion in systems incorporating inorganic quantum dots (QDs) is of great interest for applications in solar energy conversion, bioimaging, and photodynamic therapy. Achieving high up-conversion efficiency requires not only high-quality inorganic nanoparticles, but also precise control of their surface functional groups. Gas-phase surface functionalization provides a new pathway towards controlling the surface of small inorganic nanoparticles. In this contribution, we utilize a one-step low-temperature plasma technique for the synthesis and in-flight partial functionalization of silicon QDs with alkyl chains. The partially functionalized surface is then modified further with 9-vinylanthracene via thermal hydrosilylation resulting in the grafting of 9-ethylanthracene (9EA) groups. We have found that the minimum alkyl ligand density necessary for quantum dot solubility also gives the maximum upconversion quantum yield, reaching 17% for silicon QDs with Si-dodecyl chains and an average of 3 9EA molecules per particle. Gas-phase modification of silicon quantum dots enables a precise control of their surface functional groups, in turn enabling high photon upconversion efficiency.
doi_str_mv 10.1039/d2nr04902c
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d2nr04902c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737117882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-331fb2d81e8fd9ce26fe8f0a6d4e5873970897f1ea8580ca31b98cedb30a91833</originalsourceid><addsrcrecordid>eNpdkc1LAzEQxYMoWKsX70LAiwirSWa7mxylahWKgigelzSbtCnbTZuPg_-9qZUKXmYejx_DzBuEzim5oQTEbct6T0pBmDpAA0ZKUgDU7HCvq_IYnYSwJKQSUMEAfU5kKNYLGTSee2mi7efYOI_jQuNV6qI1qVfRul52OCRvpMq-a62xSm5t7AwOtrMqy02SfUwr3LoYTtGRkV3QZ799iD4eH97HT8X0dfI8vpsWCmgZ80bUzFjLqeamFUqzymRFZNWWesRrEDXhojZUSz7iREmgM8GVbmdApKAcYIiudnPX3m2SDrFZ2aB018leuxQaVkNNac05y-jlP3Tpks-HbakSRpALzdT1jlLeheC1adberqT_aihpthk39-zl7SfjcYYvdrAPas_9_QC-AZHneR4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2743537431</pqid></control><display><type>article</type><title>Gas-phase grafting for the multifunctional surface modification of silicon quantum dots</title><source>Royal Society of Chemistry Journals</source><creator>Schwan, Joseph ; Wang, Kefu ; Tang, Ming Lee ; Mangolini, Lorenzo</creator><creatorcontrib>Schwan, Joseph ; Wang, Kefu ; Tang, Ming Lee ; Mangolini, Lorenzo</creatorcontrib><description>Photon upconversion in systems incorporating inorganic quantum dots (QDs) is of great interest for applications in solar energy conversion, bioimaging, and photodynamic therapy. Achieving high up-conversion efficiency requires not only high-quality inorganic nanoparticles, but also precise control of their surface functional groups. Gas-phase surface functionalization provides a new pathway towards controlling the surface of small inorganic nanoparticles. In this contribution, we utilize a one-step low-temperature plasma technique for the synthesis and in-flight partial functionalization of silicon QDs with alkyl chains. The partially functionalized surface is then modified further with 9-vinylanthracene via thermal hydrosilylation resulting in the grafting of 9-ethylanthracene (9EA) groups. We have found that the minimum alkyl ligand density necessary for quantum dot solubility also gives the maximum upconversion quantum yield, reaching 17% for silicon QDs with Si-dodecyl chains and an average of 3 9EA molecules per particle. Gas-phase modification of silicon quantum dots enables a precise control of their surface functional groups, in turn enabling high photon upconversion efficiency.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d2nr04902c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chains ; Functional groups ; Grafting ; Hydrosilylation ; Low temperature ; Medical imaging ; Nanoparticles ; Photodynamic therapy ; Quantum dots ; Silicon ; Solar energy conversion ; Upconversion</subject><ispartof>Nanoscale, 2022-12, Vol.14 (46), p.17385-17391</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-331fb2d81e8fd9ce26fe8f0a6d4e5873970897f1ea8580ca31b98cedb30a91833</citedby><cites>FETCH-LOGICAL-c314t-331fb2d81e8fd9ce26fe8f0a6d4e5873970897f1ea8580ca31b98cedb30a91833</cites><orcidid>0000-0002-0057-2450 ; 0000-0002-7642-2598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Schwan, Joseph</creatorcontrib><creatorcontrib>Wang, Kefu</creatorcontrib><creatorcontrib>Tang, Ming Lee</creatorcontrib><creatorcontrib>Mangolini, Lorenzo</creatorcontrib><title>Gas-phase grafting for the multifunctional surface modification of silicon quantum dots</title><title>Nanoscale</title><description>Photon upconversion in systems incorporating inorganic quantum dots (QDs) is of great interest for applications in solar energy conversion, bioimaging, and photodynamic therapy. Achieving high up-conversion efficiency requires not only high-quality inorganic nanoparticles, but also precise control of their surface functional groups. Gas-phase surface functionalization provides a new pathway towards controlling the surface of small inorganic nanoparticles. In this contribution, we utilize a one-step low-temperature plasma technique for the synthesis and in-flight partial functionalization of silicon QDs with alkyl chains. The partially functionalized surface is then modified further with 9-vinylanthracene via thermal hydrosilylation resulting in the grafting of 9-ethylanthracene (9EA) groups. We have found that the minimum alkyl ligand density necessary for quantum dot solubility also gives the maximum upconversion quantum yield, reaching 17% for silicon QDs with Si-dodecyl chains and an average of 3 9EA molecules per particle. Gas-phase modification of silicon quantum dots enables a precise control of their surface functional groups, in turn enabling high photon upconversion efficiency.</description><subject>Chains</subject><subject>Functional groups</subject><subject>Grafting</subject><subject>Hydrosilylation</subject><subject>Low temperature</subject><subject>Medical imaging</subject><subject>Nanoparticles</subject><subject>Photodynamic therapy</subject><subject>Quantum dots</subject><subject>Silicon</subject><subject>Solar energy conversion</subject><subject>Upconversion</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LAzEQxYMoWKsX70LAiwirSWa7mxylahWKgigelzSbtCnbTZuPg_-9qZUKXmYejx_DzBuEzim5oQTEbct6T0pBmDpAA0ZKUgDU7HCvq_IYnYSwJKQSUMEAfU5kKNYLGTSee2mi7efYOI_jQuNV6qI1qVfRul52OCRvpMq-a62xSm5t7AwOtrMqy02SfUwr3LoYTtGRkV3QZ799iD4eH97HT8X0dfI8vpsWCmgZ80bUzFjLqeamFUqzymRFZNWWesRrEDXhojZUSz7iREmgM8GVbmdApKAcYIiudnPX3m2SDrFZ2aB018leuxQaVkNNac05y-jlP3Tpks-HbakSRpALzdT1jlLeheC1adberqT_aihpthk39-zl7SfjcYYvdrAPas_9_QC-AZHneR4</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Schwan, Joseph</creator><creator>Wang, Kefu</creator><creator>Tang, Ming Lee</creator><creator>Mangolini, Lorenzo</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0057-2450</orcidid><orcidid>https://orcid.org/0000-0002-7642-2598</orcidid></search><sort><creationdate>20221201</creationdate><title>Gas-phase grafting for the multifunctional surface modification of silicon quantum dots</title><author>Schwan, Joseph ; Wang, Kefu ; Tang, Ming Lee ; Mangolini, Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-331fb2d81e8fd9ce26fe8f0a6d4e5873970897f1ea8580ca31b98cedb30a91833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chains</topic><topic>Functional groups</topic><topic>Grafting</topic><topic>Hydrosilylation</topic><topic>Low temperature</topic><topic>Medical imaging</topic><topic>Nanoparticles</topic><topic>Photodynamic therapy</topic><topic>Quantum dots</topic><topic>Silicon</topic><topic>Solar energy conversion</topic><topic>Upconversion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwan, Joseph</creatorcontrib><creatorcontrib>Wang, Kefu</creatorcontrib><creatorcontrib>Tang, Ming Lee</creatorcontrib><creatorcontrib>Mangolini, Lorenzo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwan, Joseph</au><au>Wang, Kefu</au><au>Tang, Ming Lee</au><au>Mangolini, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas-phase grafting for the multifunctional surface modification of silicon quantum dots</atitle><jtitle>Nanoscale</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>14</volume><issue>46</issue><spage>17385</spage><epage>17391</epage><pages>17385-17391</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Photon upconversion in systems incorporating inorganic quantum dots (QDs) is of great interest for applications in solar energy conversion, bioimaging, and photodynamic therapy. Achieving high up-conversion efficiency requires not only high-quality inorganic nanoparticles, but also precise control of their surface functional groups. Gas-phase surface functionalization provides a new pathway towards controlling the surface of small inorganic nanoparticles. In this contribution, we utilize a one-step low-temperature plasma technique for the synthesis and in-flight partial functionalization of silicon QDs with alkyl chains. The partially functionalized surface is then modified further with 9-vinylanthracene via thermal hydrosilylation resulting in the grafting of 9-ethylanthracene (9EA) groups. We have found that the minimum alkyl ligand density necessary for quantum dot solubility also gives the maximum upconversion quantum yield, reaching 17% for silicon QDs with Si-dodecyl chains and an average of 3 9EA molecules per particle. Gas-phase modification of silicon quantum dots enables a precise control of their surface functional groups, in turn enabling high photon upconversion efficiency.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2nr04902c</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0057-2450</orcidid><orcidid>https://orcid.org/0000-0002-7642-2598</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2022-12, Vol.14 (46), p.17385-17391
issn 2040-3364
2040-3372
language eng
recordid cdi_rsc_primary_d2nr04902c
source Royal Society of Chemistry Journals
subjects Chains
Functional groups
Grafting
Hydrosilylation
Low temperature
Medical imaging
Nanoparticles
Photodynamic therapy
Quantum dots
Silicon
Solar energy conversion
Upconversion
title Gas-phase grafting for the multifunctional surface modification of silicon quantum dots
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas-phase%20grafting%20for%20the%20multifunctional%20surface%20modification%20of%20silicon%20quantum%20dots&rft.jtitle=Nanoscale&rft.au=Schwan,%20Joseph&rft.date=2022-12-01&rft.volume=14&rft.issue=46&rft.spage=17385&rft.epage=17391&rft.pages=17385-17391&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d2nr04902c&rft_dat=%3Cproquest_rsc_p%3E2737117882%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-331fb2d81e8fd9ce26fe8f0a6d4e5873970897f1ea8580ca31b98cedb30a91833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2743537431&rft_id=info:pmid/&rfr_iscdi=true