Loading…

Monitoring hydrogen transport through graphene by surface-enhanced Raman spectroscopy

Exploring the atomic or molecular transport properties of two-dimensional materials is vital to understand their inherent functions and, thus, to expedite their use in various applications. Herein, a surface-enhanced Raman spectroscopy (SERS)-based in situ analytical tool for the sensitive and rapid...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2023-01, Vol.15 (4), p.1537-1541
Main Authors: Wy, Younghyun, Park, Jaesung, Huh, Sung, Kwon, Hyuksang, Goo, Bon Seung, Jung, Jung Young, Han, Sang Woo
Format: Article
Language:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Exploring the atomic or molecular transport properties of two-dimensional materials is vital to understand their inherent functions and, thus, to expedite their use in various applications. Herein, a surface-enhanced Raman spectroscopy (SERS)-based in situ analytical tool for the sensitive and rapid monitoring of hydrogen transport through graphene is reported. In this method, a reducing agent, which can provide hydrogen species, and a Raman dye self-assembled on a SERS platform are separated by a graphene membrane, and the reduction of the Raman dye by hydrogen species transferred through graphene is monitored with SERS. For validating the efficacy of our method, the catalytic reduction of surface-bound 4-nitrothiophenol by sodium borohydride was chosen in this study. The experimental results distinctly demonstrate that the high sensitivity and rapid detection ability of SERS can allow the effective analysis of the hydrogen transport properties of graphene. A surface-enhanced Raman spectroscopy-based in situ analytical tool for the sensitive and rapid monitoring of hydrogen transport through graphene was developed.
ISSN:2040-3364
2040-3372
DOI:10.1039/d2nr06010h