Loading…

AlN micro-honeycomb reinforced stearic acid-based phase-change composites with high thermal conductivity for solar-thermal-electric conversion

Phase-change materials (PCMs) for efficient thermal energy harvesting have promising prospects for thermal energy storage and thermal management. However, the low intrinsic thermal conductivity (TC) of PCMs is a long-standing drawback due to a lack of a thermally conductive network inside them. Here...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-05, Vol.11 (2), p.1727-1737
Main Authors: Hu, Jiabin, Wei, Zhilei, Ge, Bangzhi, Zhao, Lei, Peng, Kang, Shi, Zhongqi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c281t-109c22ca6422bc7c115d518cc0101d7d284dc1d9757764b2adbce89e02586a143
cites cdi_FETCH-LOGICAL-c281t-109c22ca6422bc7c115d518cc0101d7d284dc1d9757764b2adbce89e02586a143
container_end_page 1737
container_issue 2
container_start_page 1727
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Hu, Jiabin
Wei, Zhilei
Ge, Bangzhi
Zhao, Lei
Peng, Kang
Shi, Zhongqi
description Phase-change materials (PCMs) for efficient thermal energy harvesting have promising prospects for thermal energy storage and thermal management. However, the low intrinsic thermal conductivity (TC) of PCMs is a long-standing drawback due to a lack of a thermally conductive network inside them. Herein, a cost-effective route for preparing thermal-conductive phase-change composites by freeze-casting and combustion synthesis to obtain micro-honeycomb aluminum nitride (MH-AlN) reinforcements followed by the impregnation with liquid stearic acid (SA) was presented. The as-prepared MH-AlN/SA composite at 44.46 vol% AlN loading exhibited a high TC of 13.95 W m −1 K −1 parallel to the pore channels, up to 53.49-fold higher compared with that of pure SA. The contact thermal resistance between AlN particles can be greatly lowered via constructing a three-dimensional MH-AlN network inside the SA matrix. Additionally, a typical solar thermoelectric generator was devised and photothermal-electric energy transformation was successfully realized. Real-time recorded maximum output voltage and current were 409.0 mV and 110.8 mA, respectively. The enhancement of the heat transfer gives MH-AlN/SA phase-change composites more application prospects in industrial waste heat utilization and effective solar energy harvesting. The designed solar-thermal-electric device using the as-prepared MH-AlN/SA composite presents a high output voltage and current of 409 mV and 110.8 mA, respectively. Its peak output power density is high up to 113.3 W m −2 .
doi_str_mv 10.1039/d2ta08748k
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d2ta08748k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817898778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-109c22ca6422bc7c115d518cc0101d7d284dc1d9757764b2adbce89e02586a143</originalsourceid><addsrcrecordid>eNpFkU9LAzEQxRdRsNRevAsBb0I0SXc32WOpf7HopZ6X7CTtpu5u1iSt9Ev4mU1tqXOZYebHe_AmSS4puaVkXNwpFiQRPBWfJ8mAkYxgnhb56XEW4jwZeb8isQQheVEMkp9J84ZaA87i2nZ6C7atkNOmW1gHWiEftHQGkASjcCV9XPV1bBhq2S01inxvvQnao28TalSbZY1CrV0rm3js1BqC2ZiwRVEQedtIhw9nrBsNYSceuY123tjuIjlbyMbr0aEPk4_Hh_n0Gc_en16mkxkGJmjAlBTAGMg8ZawCDpRmKqMCgFBCFVdMpAqoKnjGeZ5WTKoKtCg0YZnIJU3Hw-R6r9s7-7XWPpQru3ZdtCyjAReF4FxE6mZPxXi8d3pR9s600m1LSspd5OU9m0_-In-N8NUedh6O3P9Lxr-BRICI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817898778</pqid></control><display><type>article</type><title>AlN micro-honeycomb reinforced stearic acid-based phase-change composites with high thermal conductivity for solar-thermal-electric conversion</title><source>Royal Society of Chemistry</source><creator>Hu, Jiabin ; Wei, Zhilei ; Ge, Bangzhi ; Zhao, Lei ; Peng, Kang ; Shi, Zhongqi</creator><creatorcontrib>Hu, Jiabin ; Wei, Zhilei ; Ge, Bangzhi ; Zhao, Lei ; Peng, Kang ; Shi, Zhongqi</creatorcontrib><description>Phase-change materials (PCMs) for efficient thermal energy harvesting have promising prospects for thermal energy storage and thermal management. However, the low intrinsic thermal conductivity (TC) of PCMs is a long-standing drawback due to a lack of a thermally conductive network inside them. Herein, a cost-effective route for preparing thermal-conductive phase-change composites by freeze-casting and combustion synthesis to obtain micro-honeycomb aluminum nitride (MH-AlN) reinforcements followed by the impregnation with liquid stearic acid (SA) was presented. The as-prepared MH-AlN/SA composite at 44.46 vol% AlN loading exhibited a high TC of 13.95 W m −1 K −1 parallel to the pore channels, up to 53.49-fold higher compared with that of pure SA. The contact thermal resistance between AlN particles can be greatly lowered via constructing a three-dimensional MH-AlN network inside the SA matrix. Additionally, a typical solar thermoelectric generator was devised and photothermal-electric energy transformation was successfully realized. Real-time recorded maximum output voltage and current were 409.0 mV and 110.8 mA, respectively. The enhancement of the heat transfer gives MH-AlN/SA phase-change composites more application prospects in industrial waste heat utilization and effective solar energy harvesting. The designed solar-thermal-electric device using the as-prepared MH-AlN/SA composite presents a high output voltage and current of 409 mV and 110.8 mA, respectively. Its peak output power density is high up to 113.3 W m −2 .</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta08748k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aluminum ; Aluminum nitride ; Combustion synthesis ; Composite materials ; Electric contacts ; Energy conversion ; Energy harvesting ; Energy storage ; Heat conductivity ; Heat transfer ; Industrial wastes ; Phase change materials ; Photothermal conversion ; Solar energy ; Stearic acid ; Thermal conductivity ; Thermal energy ; Thermal management ; Thermal resistance ; Thermoelectric generators ; Waste heat recovery</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-05, Vol.11 (2), p.1727-1737</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-109c22ca6422bc7c115d518cc0101d7d284dc1d9757764b2adbce89e02586a143</citedby><cites>FETCH-LOGICAL-c281t-109c22ca6422bc7c115d518cc0101d7d284dc1d9757764b2adbce89e02586a143</cites><orcidid>0000-0001-7742-3528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hu, Jiabin</creatorcontrib><creatorcontrib>Wei, Zhilei</creatorcontrib><creatorcontrib>Ge, Bangzhi</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Peng, Kang</creatorcontrib><creatorcontrib>Shi, Zhongqi</creatorcontrib><title>AlN micro-honeycomb reinforced stearic acid-based phase-change composites with high thermal conductivity for solar-thermal-electric conversion</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Phase-change materials (PCMs) for efficient thermal energy harvesting have promising prospects for thermal energy storage and thermal management. However, the low intrinsic thermal conductivity (TC) of PCMs is a long-standing drawback due to a lack of a thermally conductive network inside them. Herein, a cost-effective route for preparing thermal-conductive phase-change composites by freeze-casting and combustion synthesis to obtain micro-honeycomb aluminum nitride (MH-AlN) reinforcements followed by the impregnation with liquid stearic acid (SA) was presented. The as-prepared MH-AlN/SA composite at 44.46 vol% AlN loading exhibited a high TC of 13.95 W m −1 K −1 parallel to the pore channels, up to 53.49-fold higher compared with that of pure SA. The contact thermal resistance between AlN particles can be greatly lowered via constructing a three-dimensional MH-AlN network inside the SA matrix. Additionally, a typical solar thermoelectric generator was devised and photothermal-electric energy transformation was successfully realized. Real-time recorded maximum output voltage and current were 409.0 mV and 110.8 mA, respectively. The enhancement of the heat transfer gives MH-AlN/SA phase-change composites more application prospects in industrial waste heat utilization and effective solar energy harvesting. The designed solar-thermal-electric device using the as-prepared MH-AlN/SA composite presents a high output voltage and current of 409 mV and 110.8 mA, respectively. Its peak output power density is high up to 113.3 W m −2 .</description><subject>Aluminum</subject><subject>Aluminum nitride</subject><subject>Combustion synthesis</subject><subject>Composite materials</subject><subject>Electric contacts</subject><subject>Energy conversion</subject><subject>Energy harvesting</subject><subject>Energy storage</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Industrial wastes</subject><subject>Phase change materials</subject><subject>Photothermal conversion</subject><subject>Solar energy</subject><subject>Stearic acid</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>Thermal management</subject><subject>Thermal resistance</subject><subject>Thermoelectric generators</subject><subject>Waste heat recovery</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkU9LAzEQxRdRsNRevAsBb0I0SXc32WOpf7HopZ6X7CTtpu5u1iSt9Ev4mU1tqXOZYebHe_AmSS4puaVkXNwpFiQRPBWfJ8mAkYxgnhb56XEW4jwZeb8isQQheVEMkp9J84ZaA87i2nZ6C7atkNOmW1gHWiEftHQGkASjcCV9XPV1bBhq2S01inxvvQnao28TalSbZY1CrV0rm3js1BqC2ZiwRVEQedtIhw9nrBsNYSceuY123tjuIjlbyMbr0aEPk4_Hh_n0Gc_en16mkxkGJmjAlBTAGMg8ZawCDpRmKqMCgFBCFVdMpAqoKnjGeZ5WTKoKtCg0YZnIJU3Hw-R6r9s7-7XWPpQru3ZdtCyjAReF4FxE6mZPxXi8d3pR9s600m1LSspd5OU9m0_-In-N8NUedh6O3P9Lxr-BRICI</recordid><startdate>20230523</startdate><enddate>20230523</enddate><creator>Hu, Jiabin</creator><creator>Wei, Zhilei</creator><creator>Ge, Bangzhi</creator><creator>Zhao, Lei</creator><creator>Peng, Kang</creator><creator>Shi, Zhongqi</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7742-3528</orcidid></search><sort><creationdate>20230523</creationdate><title>AlN micro-honeycomb reinforced stearic acid-based phase-change composites with high thermal conductivity for solar-thermal-electric conversion</title><author>Hu, Jiabin ; Wei, Zhilei ; Ge, Bangzhi ; Zhao, Lei ; Peng, Kang ; Shi, Zhongqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-109c22ca6422bc7c115d518cc0101d7d284dc1d9757764b2adbce89e02586a143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Aluminum nitride</topic><topic>Combustion synthesis</topic><topic>Composite materials</topic><topic>Electric contacts</topic><topic>Energy conversion</topic><topic>Energy harvesting</topic><topic>Energy storage</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Industrial wastes</topic><topic>Phase change materials</topic><topic>Photothermal conversion</topic><topic>Solar energy</topic><topic>Stearic acid</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>Thermal management</topic><topic>Thermal resistance</topic><topic>Thermoelectric generators</topic><topic>Waste heat recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Jiabin</creatorcontrib><creatorcontrib>Wei, Zhilei</creatorcontrib><creatorcontrib>Ge, Bangzhi</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Peng, Kang</creatorcontrib><creatorcontrib>Shi, Zhongqi</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Jiabin</au><au>Wei, Zhilei</au><au>Ge, Bangzhi</au><au>Zhao, Lei</au><au>Peng, Kang</au><au>Shi, Zhongqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AlN micro-honeycomb reinforced stearic acid-based phase-change composites with high thermal conductivity for solar-thermal-electric conversion</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-05-23</date><risdate>2023</risdate><volume>11</volume><issue>2</issue><spage>1727</spage><epage>1737</epage><pages>1727-1737</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Phase-change materials (PCMs) for efficient thermal energy harvesting have promising prospects for thermal energy storage and thermal management. However, the low intrinsic thermal conductivity (TC) of PCMs is a long-standing drawback due to a lack of a thermally conductive network inside them. Herein, a cost-effective route for preparing thermal-conductive phase-change composites by freeze-casting and combustion synthesis to obtain micro-honeycomb aluminum nitride (MH-AlN) reinforcements followed by the impregnation with liquid stearic acid (SA) was presented. The as-prepared MH-AlN/SA composite at 44.46 vol% AlN loading exhibited a high TC of 13.95 W m −1 K −1 parallel to the pore channels, up to 53.49-fold higher compared with that of pure SA. The contact thermal resistance between AlN particles can be greatly lowered via constructing a three-dimensional MH-AlN network inside the SA matrix. Additionally, a typical solar thermoelectric generator was devised and photothermal-electric energy transformation was successfully realized. Real-time recorded maximum output voltage and current were 409.0 mV and 110.8 mA, respectively. The enhancement of the heat transfer gives MH-AlN/SA phase-change composites more application prospects in industrial waste heat utilization and effective solar energy harvesting. The designed solar-thermal-electric device using the as-prepared MH-AlN/SA composite presents a high output voltage and current of 409 mV and 110.8 mA, respectively. Its peak output power density is high up to 113.3 W m −2 .</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta08748k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7742-3528</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-05, Vol.11 (2), p.1727-1737
issn 2050-7488
2050-7496
language eng
recordid cdi_rsc_primary_d2ta08748k
source Royal Society of Chemistry
subjects Aluminum
Aluminum nitride
Combustion synthesis
Composite materials
Electric contacts
Energy conversion
Energy harvesting
Energy storage
Heat conductivity
Heat transfer
Industrial wastes
Phase change materials
Photothermal conversion
Solar energy
Stearic acid
Thermal conductivity
Thermal energy
Thermal management
Thermal resistance
Thermoelectric generators
Waste heat recovery
title AlN micro-honeycomb reinforced stearic acid-based phase-change composites with high thermal conductivity for solar-thermal-electric conversion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AlN%20micro-honeycomb%20reinforced%20stearic%20acid-based%20phase-change%20composites%20with%20high%20thermal%20conductivity%20for%20solar-thermal-electric%20conversion&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Hu,%20Jiabin&rft.date=2023-05-23&rft.volume=11&rft.issue=2&rft.spage=1727&rft.epage=1737&rft.pages=1727-1737&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta08748k&rft_dat=%3Cproquest_rsc_p%3E2817898778%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-109c22ca6422bc7c115d518cc0101d7d284dc1d9757764b2adbce89e02586a143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2817898778&rft_id=info:pmid/&rfr_iscdi=true