Loading…
AlN micro-honeycomb reinforced stearic acid-based phase-change composites with high thermal conductivity for solar-thermal-electric conversion
Phase-change materials (PCMs) for efficient thermal energy harvesting have promising prospects for thermal energy storage and thermal management. However, the low intrinsic thermal conductivity (TC) of PCMs is a long-standing drawback due to a lack of a thermally conductive network inside them. Here...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-05, Vol.11 (2), p.1727-1737 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c281t-109c22ca6422bc7c115d518cc0101d7d284dc1d9757764b2adbce89e02586a143 |
---|---|
cites | cdi_FETCH-LOGICAL-c281t-109c22ca6422bc7c115d518cc0101d7d284dc1d9757764b2adbce89e02586a143 |
container_end_page | 1737 |
container_issue | 2 |
container_start_page | 1727 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 11 |
creator | Hu, Jiabin Wei, Zhilei Ge, Bangzhi Zhao, Lei Peng, Kang Shi, Zhongqi |
description | Phase-change materials (PCMs) for efficient thermal energy harvesting have promising prospects for thermal energy storage and thermal management. However, the low intrinsic thermal conductivity (TC) of PCMs is a long-standing drawback due to a lack of a thermally conductive network inside them. Herein, a cost-effective route for preparing thermal-conductive phase-change composites by freeze-casting and combustion synthesis to obtain micro-honeycomb aluminum nitride (MH-AlN) reinforcements followed by the impregnation with liquid stearic acid (SA) was presented. The as-prepared MH-AlN/SA composite at 44.46 vol% AlN loading exhibited a high TC of 13.95 W m
−1
K
−1
parallel to the pore channels, up to 53.49-fold higher compared with that of pure SA. The contact thermal resistance between AlN particles can be greatly lowered
via
constructing a three-dimensional MH-AlN network inside the SA matrix. Additionally, a typical solar thermoelectric generator was devised and photothermal-electric energy transformation was successfully realized. Real-time recorded maximum output voltage and current were 409.0 mV and 110.8 mA, respectively. The enhancement of the heat transfer gives MH-AlN/SA phase-change composites more application prospects in industrial waste heat utilization and effective solar energy harvesting.
The designed solar-thermal-electric device using the as-prepared MH-AlN/SA composite presents a high output voltage and current of 409 mV and 110.8 mA, respectively. Its peak output power density is high up to 113.3 W m
−2
. |
doi_str_mv | 10.1039/d2ta08748k |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d2ta08748k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817898778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-109c22ca6422bc7c115d518cc0101d7d284dc1d9757764b2adbce89e02586a143</originalsourceid><addsrcrecordid>eNpFkU9LAzEQxRdRsNRevAsBb0I0SXc32WOpf7HopZ6X7CTtpu5u1iSt9Ev4mU1tqXOZYebHe_AmSS4puaVkXNwpFiQRPBWfJ8mAkYxgnhb56XEW4jwZeb8isQQheVEMkp9J84ZaA87i2nZ6C7atkNOmW1gHWiEftHQGkASjcCV9XPV1bBhq2S01inxvvQnao28TalSbZY1CrV0rm3js1BqC2ZiwRVEQedtIhw9nrBsNYSceuY123tjuIjlbyMbr0aEPk4_Hh_n0Gc_en16mkxkGJmjAlBTAGMg8ZawCDpRmKqMCgFBCFVdMpAqoKnjGeZ5WTKoKtCg0YZnIJU3Hw-R6r9s7-7XWPpQru3ZdtCyjAReF4FxE6mZPxXi8d3pR9s600m1LSspd5OU9m0_-In-N8NUedh6O3P9Lxr-BRICI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817898778</pqid></control><display><type>article</type><title>AlN micro-honeycomb reinforced stearic acid-based phase-change composites with high thermal conductivity for solar-thermal-electric conversion</title><source>Royal Society of Chemistry</source><creator>Hu, Jiabin ; Wei, Zhilei ; Ge, Bangzhi ; Zhao, Lei ; Peng, Kang ; Shi, Zhongqi</creator><creatorcontrib>Hu, Jiabin ; Wei, Zhilei ; Ge, Bangzhi ; Zhao, Lei ; Peng, Kang ; Shi, Zhongqi</creatorcontrib><description>Phase-change materials (PCMs) for efficient thermal energy harvesting have promising prospects for thermal energy storage and thermal management. However, the low intrinsic thermal conductivity (TC) of PCMs is a long-standing drawback due to a lack of a thermally conductive network inside them. Herein, a cost-effective route for preparing thermal-conductive phase-change composites by freeze-casting and combustion synthesis to obtain micro-honeycomb aluminum nitride (MH-AlN) reinforcements followed by the impregnation with liquid stearic acid (SA) was presented. The as-prepared MH-AlN/SA composite at 44.46 vol% AlN loading exhibited a high TC of 13.95 W m
−1
K
−1
parallel to the pore channels, up to 53.49-fold higher compared with that of pure SA. The contact thermal resistance between AlN particles can be greatly lowered
via
constructing a three-dimensional MH-AlN network inside the SA matrix. Additionally, a typical solar thermoelectric generator was devised and photothermal-electric energy transformation was successfully realized. Real-time recorded maximum output voltage and current were 409.0 mV and 110.8 mA, respectively. The enhancement of the heat transfer gives MH-AlN/SA phase-change composites more application prospects in industrial waste heat utilization and effective solar energy harvesting.
The designed solar-thermal-electric device using the as-prepared MH-AlN/SA composite presents a high output voltage and current of 409 mV and 110.8 mA, respectively. Its peak output power density is high up to 113.3 W m
−2
.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta08748k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aluminum ; Aluminum nitride ; Combustion synthesis ; Composite materials ; Electric contacts ; Energy conversion ; Energy harvesting ; Energy storage ; Heat conductivity ; Heat transfer ; Industrial wastes ; Phase change materials ; Photothermal conversion ; Solar energy ; Stearic acid ; Thermal conductivity ; Thermal energy ; Thermal management ; Thermal resistance ; Thermoelectric generators ; Waste heat recovery</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-05, Vol.11 (2), p.1727-1737</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-109c22ca6422bc7c115d518cc0101d7d284dc1d9757764b2adbce89e02586a143</citedby><cites>FETCH-LOGICAL-c281t-109c22ca6422bc7c115d518cc0101d7d284dc1d9757764b2adbce89e02586a143</cites><orcidid>0000-0001-7742-3528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hu, Jiabin</creatorcontrib><creatorcontrib>Wei, Zhilei</creatorcontrib><creatorcontrib>Ge, Bangzhi</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Peng, Kang</creatorcontrib><creatorcontrib>Shi, Zhongqi</creatorcontrib><title>AlN micro-honeycomb reinforced stearic acid-based phase-change composites with high thermal conductivity for solar-thermal-electric conversion</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Phase-change materials (PCMs) for efficient thermal energy harvesting have promising prospects for thermal energy storage and thermal management. However, the low intrinsic thermal conductivity (TC) of PCMs is a long-standing drawback due to a lack of a thermally conductive network inside them. Herein, a cost-effective route for preparing thermal-conductive phase-change composites by freeze-casting and combustion synthesis to obtain micro-honeycomb aluminum nitride (MH-AlN) reinforcements followed by the impregnation with liquid stearic acid (SA) was presented. The as-prepared MH-AlN/SA composite at 44.46 vol% AlN loading exhibited a high TC of 13.95 W m
−1
K
−1
parallel to the pore channels, up to 53.49-fold higher compared with that of pure SA. The contact thermal resistance between AlN particles can be greatly lowered
via
constructing a three-dimensional MH-AlN network inside the SA matrix. Additionally, a typical solar thermoelectric generator was devised and photothermal-electric energy transformation was successfully realized. Real-time recorded maximum output voltage and current were 409.0 mV and 110.8 mA, respectively. The enhancement of the heat transfer gives MH-AlN/SA phase-change composites more application prospects in industrial waste heat utilization and effective solar energy harvesting.
The designed solar-thermal-electric device using the as-prepared MH-AlN/SA composite presents a high output voltage and current of 409 mV and 110.8 mA, respectively. Its peak output power density is high up to 113.3 W m
−2
.</description><subject>Aluminum</subject><subject>Aluminum nitride</subject><subject>Combustion synthesis</subject><subject>Composite materials</subject><subject>Electric contacts</subject><subject>Energy conversion</subject><subject>Energy harvesting</subject><subject>Energy storage</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Industrial wastes</subject><subject>Phase change materials</subject><subject>Photothermal conversion</subject><subject>Solar energy</subject><subject>Stearic acid</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>Thermal management</subject><subject>Thermal resistance</subject><subject>Thermoelectric generators</subject><subject>Waste heat recovery</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkU9LAzEQxRdRsNRevAsBb0I0SXc32WOpf7HopZ6X7CTtpu5u1iSt9Ev4mU1tqXOZYebHe_AmSS4puaVkXNwpFiQRPBWfJ8mAkYxgnhb56XEW4jwZeb8isQQheVEMkp9J84ZaA87i2nZ6C7atkNOmW1gHWiEftHQGkASjcCV9XPV1bBhq2S01inxvvQnao28TalSbZY1CrV0rm3js1BqC2ZiwRVEQedtIhw9nrBsNYSceuY123tjuIjlbyMbr0aEPk4_Hh_n0Gc_en16mkxkGJmjAlBTAGMg8ZawCDpRmKqMCgFBCFVdMpAqoKnjGeZ5WTKoKtCg0YZnIJU3Hw-R6r9s7-7XWPpQru3ZdtCyjAReF4FxE6mZPxXi8d3pR9s600m1LSspd5OU9m0_-In-N8NUedh6O3P9Lxr-BRICI</recordid><startdate>20230523</startdate><enddate>20230523</enddate><creator>Hu, Jiabin</creator><creator>Wei, Zhilei</creator><creator>Ge, Bangzhi</creator><creator>Zhao, Lei</creator><creator>Peng, Kang</creator><creator>Shi, Zhongqi</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7742-3528</orcidid></search><sort><creationdate>20230523</creationdate><title>AlN micro-honeycomb reinforced stearic acid-based phase-change composites with high thermal conductivity for solar-thermal-electric conversion</title><author>Hu, Jiabin ; Wei, Zhilei ; Ge, Bangzhi ; Zhao, Lei ; Peng, Kang ; Shi, Zhongqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-109c22ca6422bc7c115d518cc0101d7d284dc1d9757764b2adbce89e02586a143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Aluminum nitride</topic><topic>Combustion synthesis</topic><topic>Composite materials</topic><topic>Electric contacts</topic><topic>Energy conversion</topic><topic>Energy harvesting</topic><topic>Energy storage</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Industrial wastes</topic><topic>Phase change materials</topic><topic>Photothermal conversion</topic><topic>Solar energy</topic><topic>Stearic acid</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>Thermal management</topic><topic>Thermal resistance</topic><topic>Thermoelectric generators</topic><topic>Waste heat recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Jiabin</creatorcontrib><creatorcontrib>Wei, Zhilei</creatorcontrib><creatorcontrib>Ge, Bangzhi</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Peng, Kang</creatorcontrib><creatorcontrib>Shi, Zhongqi</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Jiabin</au><au>Wei, Zhilei</au><au>Ge, Bangzhi</au><au>Zhao, Lei</au><au>Peng, Kang</au><au>Shi, Zhongqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AlN micro-honeycomb reinforced stearic acid-based phase-change composites with high thermal conductivity for solar-thermal-electric conversion</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-05-23</date><risdate>2023</risdate><volume>11</volume><issue>2</issue><spage>1727</spage><epage>1737</epage><pages>1727-1737</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Phase-change materials (PCMs) for efficient thermal energy harvesting have promising prospects for thermal energy storage and thermal management. However, the low intrinsic thermal conductivity (TC) of PCMs is a long-standing drawback due to a lack of a thermally conductive network inside them. Herein, a cost-effective route for preparing thermal-conductive phase-change composites by freeze-casting and combustion synthesis to obtain micro-honeycomb aluminum nitride (MH-AlN) reinforcements followed by the impregnation with liquid stearic acid (SA) was presented. The as-prepared MH-AlN/SA composite at 44.46 vol% AlN loading exhibited a high TC of 13.95 W m
−1
K
−1
parallel to the pore channels, up to 53.49-fold higher compared with that of pure SA. The contact thermal resistance between AlN particles can be greatly lowered
via
constructing a three-dimensional MH-AlN network inside the SA matrix. Additionally, a typical solar thermoelectric generator was devised and photothermal-electric energy transformation was successfully realized. Real-time recorded maximum output voltage and current were 409.0 mV and 110.8 mA, respectively. The enhancement of the heat transfer gives MH-AlN/SA phase-change composites more application prospects in industrial waste heat utilization and effective solar energy harvesting.
The designed solar-thermal-electric device using the as-prepared MH-AlN/SA composite presents a high output voltage and current of 409 mV and 110.8 mA, respectively. Its peak output power density is high up to 113.3 W m
−2
.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta08748k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7742-3528</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2023-05, Vol.11 (2), p.1727-1737 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_rsc_primary_d2ta08748k |
source | Royal Society of Chemistry |
subjects | Aluminum Aluminum nitride Combustion synthesis Composite materials Electric contacts Energy conversion Energy harvesting Energy storage Heat conductivity Heat transfer Industrial wastes Phase change materials Photothermal conversion Solar energy Stearic acid Thermal conductivity Thermal energy Thermal management Thermal resistance Thermoelectric generators Waste heat recovery |
title | AlN micro-honeycomb reinforced stearic acid-based phase-change composites with high thermal conductivity for solar-thermal-electric conversion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AlN%20micro-honeycomb%20reinforced%20stearic%20acid-based%20phase-change%20composites%20with%20high%20thermal%20conductivity%20for%20solar-thermal-electric%20conversion&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Hu,%20Jiabin&rft.date=2023-05-23&rft.volume=11&rft.issue=2&rft.spage=1727&rft.epage=1737&rft.pages=1727-1737&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta08748k&rft_dat=%3Cproquest_rsc_p%3E2817898778%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-109c22ca6422bc7c115d518cc0101d7d284dc1d9757764b2adbce89e02586a143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2817898778&rft_id=info:pmid/&rfr_iscdi=true |