Loading…

Manganese-based oxide electrocatalysts for the oxygen evolution reaction: a review

The oxygen evolution reaction (OER), as an essential process in water decomposition and air batteries, has received increasing attention in the context of clean energy production and efficient energy storage. With their abundant composition and morphology, manganese-based oxides (MnO x ) offer great...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-03, Vol.11 (11), p.5476-5494
Main Authors: Wang, Peng, Zhang, Shiqi, Wang, Zhaobo, Mo, Yuhan, Luo, Xiaoyang, Yang, Fan, Lv, Meili, Li, Zhaoxiang, Liu, Xuanwen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c281t-f82abcebff7978c13d1d5d9ebbb3a4435f68b142ca6b2ecc4ff95cf4011bb81c3
cites cdi_FETCH-LOGICAL-c281t-f82abcebff7978c13d1d5d9ebbb3a4435f68b142ca6b2ecc4ff95cf4011bb81c3
container_end_page 5494
container_issue 11
container_start_page 5476
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Wang, Peng
Zhang, Shiqi
Wang, Zhaobo
Mo, Yuhan
Luo, Xiaoyang
Yang, Fan
Lv, Meili
Li, Zhaoxiang
Liu, Xuanwen
description The oxygen evolution reaction (OER), as an essential process in water decomposition and air batteries, has received increasing attention in the context of clean energy production and efficient energy storage. With their abundant composition and morphology, manganese-based oxides (MnO x ) offer great possibilities for the exploration and design of OER catalysts. In this paper, three classes of MnO x materials, including MnO 2 , Mn 2 O 3, and Mn 3 O 4 , are systematically reviewed and their development and applications in OER systems are comprehensively presented. Subsequently, the effects of Jahn-Teller distortion and the question of the active site and stability of MnO x in the OER are discussed, and the presence of Mn 3+ , which is considered essential for OER activity, and strategies for improving performance are proposed. This paper focuses on the impact of crystal structure, catalytic mechanisms, and design strategies on MnO x . The oxygen evolution reaction (OER), as an essential process in water decomposition and air batteries, has received increasing attention in the context of clean energy production and efficient energy storage.
doi_str_mv 10.1039/d2ta09039b
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d2ta09039b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786457108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-f82abcebff7978c13d1d5d9ebbb3a4435f68b142ca6b2ecc4ff95cf4011bb81c3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWGov3oWAN2E1yWZ3E2-1fkJFkHpekuykblk3NUmr_femVupc5oH3YQZehE4puaQkl1cNi4rIRPoADRgpSFZxWR7uWYhjNAphQdIIQkopB-j1WfVz1UOATKsADXbfbQMYOjDRO6Oi6jYhBmydx_EdUryZQ49h7bpVbF2PPSizhWusEq9b-DpBR1Z1AUZ_e4je7u9mk8ds-vLwNBlPM8MEjZkVTGkD2tpKVsLQvKFN0UjQWueK87ywpdCUM6NKzcAYbq0sjOWEUq0FNfkQne_uLr37XEGI9cKtfJ9e1qwSJS8qSkSyLnaW8S4ED7Ze-vZD-U1NSb2trb5ls_FvbTdJPtvJPpi9919r_gMoA2s5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786457108</pqid></control><display><type>article</type><title>Manganese-based oxide electrocatalysts for the oxygen evolution reaction: a review</title><source>Royal Society of Chemistry</source><creator>Wang, Peng ; Zhang, Shiqi ; Wang, Zhaobo ; Mo, Yuhan ; Luo, Xiaoyang ; Yang, Fan ; Lv, Meili ; Li, Zhaoxiang ; Liu, Xuanwen</creator><creatorcontrib>Wang, Peng ; Zhang, Shiqi ; Wang, Zhaobo ; Mo, Yuhan ; Luo, Xiaoyang ; Yang, Fan ; Lv, Meili ; Li, Zhaoxiang ; Liu, Xuanwen</creatorcontrib><description>The oxygen evolution reaction (OER), as an essential process in water decomposition and air batteries, has received increasing attention in the context of clean energy production and efficient energy storage. With their abundant composition and morphology, manganese-based oxides (MnO x ) offer great possibilities for the exploration and design of OER catalysts. In this paper, three classes of MnO x materials, including MnO 2 , Mn 2 O 3, and Mn 3 O 4 , are systematically reviewed and their development and applications in OER systems are comprehensively presented. Subsequently, the effects of Jahn-Teller distortion and the question of the active site and stability of MnO x in the OER are discussed, and the presence of Mn 3+ , which is considered essential for OER activity, and strategies for improving performance are proposed. This paper focuses on the impact of crystal structure, catalytic mechanisms, and design strategies on MnO x . The oxygen evolution reaction (OER), as an essential process in water decomposition and air batteries, has received increasing attention in the context of clean energy production and efficient energy storage.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta09039b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Air batteries ; Batteries ; Catalysts ; Clean energy ; Crystal structure ; Decomposition reactions ; Electrocatalysts ; Energy storage ; Jahn-Teller effect ; Manganese ; Manganese dioxide ; Manganese oxides ; Oxygen evolution reactions</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-03, Vol.11 (11), p.5476-5494</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-f82abcebff7978c13d1d5d9ebbb3a4435f68b142ca6b2ecc4ff95cf4011bb81c3</citedby><cites>FETCH-LOGICAL-c281t-f82abcebff7978c13d1d5d9ebbb3a4435f68b142ca6b2ecc4ff95cf4011bb81c3</cites><orcidid>0000-0003-0783-2427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Zhang, Shiqi</creatorcontrib><creatorcontrib>Wang, Zhaobo</creatorcontrib><creatorcontrib>Mo, Yuhan</creatorcontrib><creatorcontrib>Luo, Xiaoyang</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Lv, Meili</creatorcontrib><creatorcontrib>Li, Zhaoxiang</creatorcontrib><creatorcontrib>Liu, Xuanwen</creatorcontrib><title>Manganese-based oxide electrocatalysts for the oxygen evolution reaction: a review</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The oxygen evolution reaction (OER), as an essential process in water decomposition and air batteries, has received increasing attention in the context of clean energy production and efficient energy storage. With their abundant composition and morphology, manganese-based oxides (MnO x ) offer great possibilities for the exploration and design of OER catalysts. In this paper, three classes of MnO x materials, including MnO 2 , Mn 2 O 3, and Mn 3 O 4 , are systematically reviewed and their development and applications in OER systems are comprehensively presented. Subsequently, the effects of Jahn-Teller distortion and the question of the active site and stability of MnO x in the OER are discussed, and the presence of Mn 3+ , which is considered essential for OER activity, and strategies for improving performance are proposed. This paper focuses on the impact of crystal structure, catalytic mechanisms, and design strategies on MnO x . The oxygen evolution reaction (OER), as an essential process in water decomposition and air batteries, has received increasing attention in the context of clean energy production and efficient energy storage.</description><subject>Air batteries</subject><subject>Batteries</subject><subject>Catalysts</subject><subject>Clean energy</subject><subject>Crystal structure</subject><subject>Decomposition reactions</subject><subject>Electrocatalysts</subject><subject>Energy storage</subject><subject>Jahn-Teller effect</subject><subject>Manganese</subject><subject>Manganese dioxide</subject><subject>Manganese oxides</subject><subject>Oxygen evolution reactions</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWGov3oWAN2E1yWZ3E2-1fkJFkHpekuykblk3NUmr_femVupc5oH3YQZehE4puaQkl1cNi4rIRPoADRgpSFZxWR7uWYhjNAphQdIIQkopB-j1WfVz1UOATKsADXbfbQMYOjDRO6Oi6jYhBmydx_EdUryZQ49h7bpVbF2PPSizhWusEq9b-DpBR1Z1AUZ_e4je7u9mk8ds-vLwNBlPM8MEjZkVTGkD2tpKVsLQvKFN0UjQWueK87ywpdCUM6NKzcAYbq0sjOWEUq0FNfkQne_uLr37XEGI9cKtfJ9e1qwSJS8qSkSyLnaW8S4ED7Ze-vZD-U1NSb2trb5ls_FvbTdJPtvJPpi9919r_gMoA2s5</recordid><startdate>20230314</startdate><enddate>20230314</enddate><creator>Wang, Peng</creator><creator>Zhang, Shiqi</creator><creator>Wang, Zhaobo</creator><creator>Mo, Yuhan</creator><creator>Luo, Xiaoyang</creator><creator>Yang, Fan</creator><creator>Lv, Meili</creator><creator>Li, Zhaoxiang</creator><creator>Liu, Xuanwen</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0783-2427</orcidid></search><sort><creationdate>20230314</creationdate><title>Manganese-based oxide electrocatalysts for the oxygen evolution reaction: a review</title><author>Wang, Peng ; Zhang, Shiqi ; Wang, Zhaobo ; Mo, Yuhan ; Luo, Xiaoyang ; Yang, Fan ; Lv, Meili ; Li, Zhaoxiang ; Liu, Xuanwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-f82abcebff7978c13d1d5d9ebbb3a4435f68b142ca6b2ecc4ff95cf4011bb81c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air batteries</topic><topic>Batteries</topic><topic>Catalysts</topic><topic>Clean energy</topic><topic>Crystal structure</topic><topic>Decomposition reactions</topic><topic>Electrocatalysts</topic><topic>Energy storage</topic><topic>Jahn-Teller effect</topic><topic>Manganese</topic><topic>Manganese dioxide</topic><topic>Manganese oxides</topic><topic>Oxygen evolution reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Zhang, Shiqi</creatorcontrib><creatorcontrib>Wang, Zhaobo</creatorcontrib><creatorcontrib>Mo, Yuhan</creatorcontrib><creatorcontrib>Luo, Xiaoyang</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Lv, Meili</creatorcontrib><creatorcontrib>Li, Zhaoxiang</creatorcontrib><creatorcontrib>Liu, Xuanwen</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Peng</au><au>Zhang, Shiqi</au><au>Wang, Zhaobo</au><au>Mo, Yuhan</au><au>Luo, Xiaoyang</au><au>Yang, Fan</au><au>Lv, Meili</au><au>Li, Zhaoxiang</au><au>Liu, Xuanwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manganese-based oxide electrocatalysts for the oxygen evolution reaction: a review</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-03-14</date><risdate>2023</risdate><volume>11</volume><issue>11</issue><spage>5476</spage><epage>5494</epage><pages>5476-5494</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The oxygen evolution reaction (OER), as an essential process in water decomposition and air batteries, has received increasing attention in the context of clean energy production and efficient energy storage. With their abundant composition and morphology, manganese-based oxides (MnO x ) offer great possibilities for the exploration and design of OER catalysts. In this paper, three classes of MnO x materials, including MnO 2 , Mn 2 O 3, and Mn 3 O 4 , are systematically reviewed and their development and applications in OER systems are comprehensively presented. Subsequently, the effects of Jahn-Teller distortion and the question of the active site and stability of MnO x in the OER are discussed, and the presence of Mn 3+ , which is considered essential for OER activity, and strategies for improving performance are proposed. This paper focuses on the impact of crystal structure, catalytic mechanisms, and design strategies on MnO x . The oxygen evolution reaction (OER), as an essential process in water decomposition and air batteries, has received increasing attention in the context of clean energy production and efficient energy storage.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta09039b</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0783-2427</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-03, Vol.11 (11), p.5476-5494
issn 2050-7488
2050-7496
language eng
recordid cdi_rsc_primary_d2ta09039b
source Royal Society of Chemistry
subjects Air batteries
Batteries
Catalysts
Clean energy
Crystal structure
Decomposition reactions
Electrocatalysts
Energy storage
Jahn-Teller effect
Manganese
Manganese dioxide
Manganese oxides
Oxygen evolution reactions
title Manganese-based oxide electrocatalysts for the oxygen evolution reaction: a review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A34%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manganese-based%20oxide%20electrocatalysts%20for%20the%20oxygen%20evolution%20reaction:%20a%20review&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Peng&rft.date=2023-03-14&rft.volume=11&rft.issue=11&rft.spage=5476&rft.epage=5494&rft.pages=5476-5494&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta09039b&rft_dat=%3Cproquest_rsc_p%3E2786457108%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-f82abcebff7978c13d1d5d9ebbb3a4435f68b142ca6b2ecc4ff95cf4011bb81c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2786457108&rft_id=info:pmid/&rfr_iscdi=true