Loading…
Manganese-based oxide electrocatalysts for the oxygen evolution reaction: a review
The oxygen evolution reaction (OER), as an essential process in water decomposition and air batteries, has received increasing attention in the context of clean energy production and efficient energy storage. With their abundant composition and morphology, manganese-based oxides (MnO x ) offer great...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-03, Vol.11 (11), p.5476-5494 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c281t-f82abcebff7978c13d1d5d9ebbb3a4435f68b142ca6b2ecc4ff95cf4011bb81c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c281t-f82abcebff7978c13d1d5d9ebbb3a4435f68b142ca6b2ecc4ff95cf4011bb81c3 |
container_end_page | 5494 |
container_issue | 11 |
container_start_page | 5476 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 11 |
creator | Wang, Peng Zhang, Shiqi Wang, Zhaobo Mo, Yuhan Luo, Xiaoyang Yang, Fan Lv, Meili Li, Zhaoxiang Liu, Xuanwen |
description | The oxygen evolution reaction (OER), as an essential process in water decomposition and air batteries, has received increasing attention in the context of clean energy production and efficient energy storage. With their abundant composition and morphology, manganese-based oxides (MnO
x
) offer great possibilities for the exploration and design of OER catalysts. In this paper, three classes of MnO
x
materials, including MnO
2
, Mn
2
O
3,
and Mn
3
O
4
, are systematically reviewed and their development and applications in OER systems are comprehensively presented. Subsequently, the effects of Jahn-Teller distortion and the question of the active site and stability of MnO
x
in the OER are discussed, and the presence of Mn
3+
, which is considered essential for OER activity, and strategies for improving performance are proposed. This paper focuses on the impact of crystal structure, catalytic mechanisms, and design strategies on MnO
x
.
The oxygen evolution reaction (OER), as an essential process in water decomposition and air batteries, has received increasing attention in the context of clean energy production and efficient energy storage. |
doi_str_mv | 10.1039/d2ta09039b |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d2ta09039b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786457108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-f82abcebff7978c13d1d5d9ebbb3a4435f68b142ca6b2ecc4ff95cf4011bb81c3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWGov3oWAN2E1yWZ3E2-1fkJFkHpekuykblk3NUmr_femVupc5oH3YQZehE4puaQkl1cNi4rIRPoADRgpSFZxWR7uWYhjNAphQdIIQkopB-j1WfVz1UOATKsADXbfbQMYOjDRO6Oi6jYhBmydx_EdUryZQ49h7bpVbF2PPSizhWusEq9b-DpBR1Z1AUZ_e4je7u9mk8ds-vLwNBlPM8MEjZkVTGkD2tpKVsLQvKFN0UjQWueK87ywpdCUM6NKzcAYbq0sjOWEUq0FNfkQne_uLr37XEGI9cKtfJ9e1qwSJS8qSkSyLnaW8S4ED7Ze-vZD-U1NSb2trb5ls_FvbTdJPtvJPpi9919r_gMoA2s5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786457108</pqid></control><display><type>article</type><title>Manganese-based oxide electrocatalysts for the oxygen evolution reaction: a review</title><source>Royal Society of Chemistry</source><creator>Wang, Peng ; Zhang, Shiqi ; Wang, Zhaobo ; Mo, Yuhan ; Luo, Xiaoyang ; Yang, Fan ; Lv, Meili ; Li, Zhaoxiang ; Liu, Xuanwen</creator><creatorcontrib>Wang, Peng ; Zhang, Shiqi ; Wang, Zhaobo ; Mo, Yuhan ; Luo, Xiaoyang ; Yang, Fan ; Lv, Meili ; Li, Zhaoxiang ; Liu, Xuanwen</creatorcontrib><description>The oxygen evolution reaction (OER), as an essential process in water decomposition and air batteries, has received increasing attention in the context of clean energy production and efficient energy storage. With their abundant composition and morphology, manganese-based oxides (MnO
x
) offer great possibilities for the exploration and design of OER catalysts. In this paper, three classes of MnO
x
materials, including MnO
2
, Mn
2
O
3,
and Mn
3
O
4
, are systematically reviewed and their development and applications in OER systems are comprehensively presented. Subsequently, the effects of Jahn-Teller distortion and the question of the active site and stability of MnO
x
in the OER are discussed, and the presence of Mn
3+
, which is considered essential for OER activity, and strategies for improving performance are proposed. This paper focuses on the impact of crystal structure, catalytic mechanisms, and design strategies on MnO
x
.
The oxygen evolution reaction (OER), as an essential process in water decomposition and air batteries, has received increasing attention in the context of clean energy production and efficient energy storage.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta09039b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Air batteries ; Batteries ; Catalysts ; Clean energy ; Crystal structure ; Decomposition reactions ; Electrocatalysts ; Energy storage ; Jahn-Teller effect ; Manganese ; Manganese dioxide ; Manganese oxides ; Oxygen evolution reactions</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-03, Vol.11 (11), p.5476-5494</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-f82abcebff7978c13d1d5d9ebbb3a4435f68b142ca6b2ecc4ff95cf4011bb81c3</citedby><cites>FETCH-LOGICAL-c281t-f82abcebff7978c13d1d5d9ebbb3a4435f68b142ca6b2ecc4ff95cf4011bb81c3</cites><orcidid>0000-0003-0783-2427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Zhang, Shiqi</creatorcontrib><creatorcontrib>Wang, Zhaobo</creatorcontrib><creatorcontrib>Mo, Yuhan</creatorcontrib><creatorcontrib>Luo, Xiaoyang</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Lv, Meili</creatorcontrib><creatorcontrib>Li, Zhaoxiang</creatorcontrib><creatorcontrib>Liu, Xuanwen</creatorcontrib><title>Manganese-based oxide electrocatalysts for the oxygen evolution reaction: a review</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The oxygen evolution reaction (OER), as an essential process in water decomposition and air batteries, has received increasing attention in the context of clean energy production and efficient energy storage. With their abundant composition and morphology, manganese-based oxides (MnO
x
) offer great possibilities for the exploration and design of OER catalysts. In this paper, three classes of MnO
x
materials, including MnO
2
, Mn
2
O
3,
and Mn
3
O
4
, are systematically reviewed and their development and applications in OER systems are comprehensively presented. Subsequently, the effects of Jahn-Teller distortion and the question of the active site and stability of MnO
x
in the OER are discussed, and the presence of Mn
3+
, which is considered essential for OER activity, and strategies for improving performance are proposed. This paper focuses on the impact of crystal structure, catalytic mechanisms, and design strategies on MnO
x
.
The oxygen evolution reaction (OER), as an essential process in water decomposition and air batteries, has received increasing attention in the context of clean energy production and efficient energy storage.</description><subject>Air batteries</subject><subject>Batteries</subject><subject>Catalysts</subject><subject>Clean energy</subject><subject>Crystal structure</subject><subject>Decomposition reactions</subject><subject>Electrocatalysts</subject><subject>Energy storage</subject><subject>Jahn-Teller effect</subject><subject>Manganese</subject><subject>Manganese dioxide</subject><subject>Manganese oxides</subject><subject>Oxygen evolution reactions</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWGov3oWAN2E1yWZ3E2-1fkJFkHpekuykblk3NUmr_femVupc5oH3YQZehE4puaQkl1cNi4rIRPoADRgpSFZxWR7uWYhjNAphQdIIQkopB-j1WfVz1UOATKsADXbfbQMYOjDRO6Oi6jYhBmydx_EdUryZQ49h7bpVbF2PPSizhWusEq9b-DpBR1Z1AUZ_e4je7u9mk8ds-vLwNBlPM8MEjZkVTGkD2tpKVsLQvKFN0UjQWueK87ywpdCUM6NKzcAYbq0sjOWEUq0FNfkQne_uLr37XEGI9cKtfJ9e1qwSJS8qSkSyLnaW8S4ED7Ze-vZD-U1NSb2trb5ls_FvbTdJPtvJPpi9919r_gMoA2s5</recordid><startdate>20230314</startdate><enddate>20230314</enddate><creator>Wang, Peng</creator><creator>Zhang, Shiqi</creator><creator>Wang, Zhaobo</creator><creator>Mo, Yuhan</creator><creator>Luo, Xiaoyang</creator><creator>Yang, Fan</creator><creator>Lv, Meili</creator><creator>Li, Zhaoxiang</creator><creator>Liu, Xuanwen</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0783-2427</orcidid></search><sort><creationdate>20230314</creationdate><title>Manganese-based oxide electrocatalysts for the oxygen evolution reaction: a review</title><author>Wang, Peng ; Zhang, Shiqi ; Wang, Zhaobo ; Mo, Yuhan ; Luo, Xiaoyang ; Yang, Fan ; Lv, Meili ; Li, Zhaoxiang ; Liu, Xuanwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-f82abcebff7978c13d1d5d9ebbb3a4435f68b142ca6b2ecc4ff95cf4011bb81c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air batteries</topic><topic>Batteries</topic><topic>Catalysts</topic><topic>Clean energy</topic><topic>Crystal structure</topic><topic>Decomposition reactions</topic><topic>Electrocatalysts</topic><topic>Energy storage</topic><topic>Jahn-Teller effect</topic><topic>Manganese</topic><topic>Manganese dioxide</topic><topic>Manganese oxides</topic><topic>Oxygen evolution reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Zhang, Shiqi</creatorcontrib><creatorcontrib>Wang, Zhaobo</creatorcontrib><creatorcontrib>Mo, Yuhan</creatorcontrib><creatorcontrib>Luo, Xiaoyang</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Lv, Meili</creatorcontrib><creatorcontrib>Li, Zhaoxiang</creatorcontrib><creatorcontrib>Liu, Xuanwen</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Peng</au><au>Zhang, Shiqi</au><au>Wang, Zhaobo</au><au>Mo, Yuhan</au><au>Luo, Xiaoyang</au><au>Yang, Fan</au><au>Lv, Meili</au><au>Li, Zhaoxiang</au><au>Liu, Xuanwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manganese-based oxide electrocatalysts for the oxygen evolution reaction: a review</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-03-14</date><risdate>2023</risdate><volume>11</volume><issue>11</issue><spage>5476</spage><epage>5494</epage><pages>5476-5494</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The oxygen evolution reaction (OER), as an essential process in water decomposition and air batteries, has received increasing attention in the context of clean energy production and efficient energy storage. With their abundant composition and morphology, manganese-based oxides (MnO
x
) offer great possibilities for the exploration and design of OER catalysts. In this paper, three classes of MnO
x
materials, including MnO
2
, Mn
2
O
3,
and Mn
3
O
4
, are systematically reviewed and their development and applications in OER systems are comprehensively presented. Subsequently, the effects of Jahn-Teller distortion and the question of the active site and stability of MnO
x
in the OER are discussed, and the presence of Mn
3+
, which is considered essential for OER activity, and strategies for improving performance are proposed. This paper focuses on the impact of crystal structure, catalytic mechanisms, and design strategies on MnO
x
.
The oxygen evolution reaction (OER), as an essential process in water decomposition and air batteries, has received increasing attention in the context of clean energy production and efficient energy storage.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta09039b</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0783-2427</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2023-03, Vol.11 (11), p.5476-5494 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_rsc_primary_d2ta09039b |
source | Royal Society of Chemistry |
subjects | Air batteries Batteries Catalysts Clean energy Crystal structure Decomposition reactions Electrocatalysts Energy storage Jahn-Teller effect Manganese Manganese dioxide Manganese oxides Oxygen evolution reactions |
title | Manganese-based oxide electrocatalysts for the oxygen evolution reaction: a review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A34%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manganese-based%20oxide%20electrocatalysts%20for%20the%20oxygen%20evolution%20reaction:%20a%20review&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Peng&rft.date=2023-03-14&rft.volume=11&rft.issue=11&rft.spage=5476&rft.epage=5494&rft.pages=5476-5494&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta09039b&rft_dat=%3Cproquest_rsc_p%3E2786457108%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-f82abcebff7978c13d1d5d9ebbb3a4435f68b142ca6b2ecc4ff95cf4011bb81c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2786457108&rft_id=info:pmid/&rfr_iscdi=true |