Loading…

Nucleic acid paranemic structures: a promising building block for functional nanomaterials in biomedical and bionanotechnological applications

Over the past few decades, DNA has been recognized as a powerful self-assembling material capable of crafting supramolecular nanoarchitectures with quasi-angstrom precision, which promises various applications in the fields of materials science, nanoengineering, and biomedical science. Notable struc...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2022-09, Vol.1 (37), p.746-7472
Main Authors: Lee, Jung Yeon, Yang, Qi, Chang, Xu, Wisniewski, Henry, Olivera, Tiffany R, Saji, Minu, Kim, Suchan, Perumal, Devanathan, Zhang, Fei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c314t-cd541042fed8093a6e5c0eadfbd203eb3c8256eee1427702ef7975c63b110f2c3
cites cdi_FETCH-LOGICAL-c314t-cd541042fed8093a6e5c0eadfbd203eb3c8256eee1427702ef7975c63b110f2c3
container_end_page 7472
container_issue 37
container_start_page 746
container_title Journal of materials chemistry. B, Materials for biology and medicine
container_volume 1
creator Lee, Jung Yeon
Yang, Qi
Chang, Xu
Wisniewski, Henry
Olivera, Tiffany R
Saji, Minu
Kim, Suchan
Perumal, Devanathan
Zhang, Fei
description Over the past few decades, DNA has been recognized as a powerful self-assembling material capable of crafting supramolecular nanoarchitectures with quasi-angstrom precision, which promises various applications in the fields of materials science, nanoengineering, and biomedical science. Notable structural features include biocompatibility, biodegradability, high digital encodability by Watson-Crick base pairing, nanoscale dimension, and surface addressability. Bottom-up fabrication of complex DNA nanostructures relies on the design of fundamental DNA motifs, including parallel (PX) and antiparallel (AX) crossovers. However, paranemic or PX motifs have not been thoroughly explored for the construction of DNA-based nanostructures compared to AX motifs. In this review, we summarize the developments of PX-based DNA nanostructures, highlight the advantages as well as challenges of PX-based assemblies, and give an overview of the structural and chemical features that lend their utilization in a variety of applications. The works presented cover PX-based DNA nanostructures in biological systems, dynamic systems, and biomedical contexts. The possible future advances of PX structures and applications are also summarized, discussed, and postulated. This review highlights the PX-based DNA nanostructures in biological systems, dynamic systems, and biomedical contexts.
doi_str_mv 10.1039/d2tb00605g
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d2tb00605g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718628718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-cd541042fed8093a6e5c0eadfbd203eb3c8256eee1427702ef7975c63b110f2c3</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhk1oIEuSS-8BQS-lsMlI8mdvbdp8QEguG-jNyKPxRltZciX7kD-R3xztbkkgc9C8wzwaeHmz7DOHcw6yudBi6gBKKNYH2UJAAcuq4PWnNw1_jrLTGDeQquZlLfNF9nI_oyWDTKHRbFRBORrSGKcw4zQHit-ZYmPwg4nGrVk3G6t3wnr8y3ofWD87nIx3yjKnnB_URMEoG5lxrDN-IG0w7ZTT23GLTIRPzlu_3i_G0SaxPRFPssM-faXT__04e7z6vbq8Wd49XN9e_rhbouT5tERd5Bxy0ZOuoZGqpAKBlO47LUBSJ7EWRUlEPBdVBYL6qqkKLGXHOfQC5XH2dX83Ofs3U5za5A_J2mTfz7EVZVNBI2qQCf3yAd34OSS3iap4XYo6vYn6tqcw-BgD9e0YzKDCc8uh3abT_hKrn7t0rhN8todDxDfuPT35CpoejyY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718628718</pqid></control><display><type>article</type><title>Nucleic acid paranemic structures: a promising building block for functional nanomaterials in biomedical and bionanotechnological applications</title><source>Royal Society of Chemistry</source><creator>Lee, Jung Yeon ; Yang, Qi ; Chang, Xu ; Wisniewski, Henry ; Olivera, Tiffany R ; Saji, Minu ; Kim, Suchan ; Perumal, Devanathan ; Zhang, Fei</creator><creatorcontrib>Lee, Jung Yeon ; Yang, Qi ; Chang, Xu ; Wisniewski, Henry ; Olivera, Tiffany R ; Saji, Minu ; Kim, Suchan ; Perumal, Devanathan ; Zhang, Fei</creatorcontrib><description>Over the past few decades, DNA has been recognized as a powerful self-assembling material capable of crafting supramolecular nanoarchitectures with quasi-angstrom precision, which promises various applications in the fields of materials science, nanoengineering, and biomedical science. Notable structural features include biocompatibility, biodegradability, high digital encodability by Watson-Crick base pairing, nanoscale dimension, and surface addressability. Bottom-up fabrication of complex DNA nanostructures relies on the design of fundamental DNA motifs, including parallel (PX) and antiparallel (AX) crossovers. However, paranemic or PX motifs have not been thoroughly explored for the construction of DNA-based nanostructures compared to AX motifs. In this review, we summarize the developments of PX-based DNA nanostructures, highlight the advantages as well as challenges of PX-based assemblies, and give an overview of the structural and chemical features that lend their utilization in a variety of applications. The works presented cover PX-based DNA nanostructures in biological systems, dynamic systems, and biomedical contexts. The possible future advances of PX structures and applications are also summarized, discussed, and postulated. This review highlights the PX-based DNA nanostructures in biological systems, dynamic systems, and biomedical contexts.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d2tb00605g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Biocompatibility ; Biodegradability ; Biodegradation ; Biomedical materials ; Construction ; Deoxyribonucleic acid ; DNA ; Dynamical systems ; Fabrication ; Functional materials ; Materials science ; Nanoengineering ; Nanomaterials ; Nanostructure ; Nanotechnology ; Nucleic acids ; Reviews ; Self-assembly</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2022-09, Vol.1 (37), p.746-7472</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-cd541042fed8093a6e5c0eadfbd203eb3c8256eee1427702ef7975c63b110f2c3</citedby><cites>FETCH-LOGICAL-c314t-cd541042fed8093a6e5c0eadfbd203eb3c8256eee1427702ef7975c63b110f2c3</cites><orcidid>0000-0002-3177-7547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Jung Yeon</creatorcontrib><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Chang, Xu</creatorcontrib><creatorcontrib>Wisniewski, Henry</creatorcontrib><creatorcontrib>Olivera, Tiffany R</creatorcontrib><creatorcontrib>Saji, Minu</creatorcontrib><creatorcontrib>Kim, Suchan</creatorcontrib><creatorcontrib>Perumal, Devanathan</creatorcontrib><creatorcontrib>Zhang, Fei</creatorcontrib><title>Nucleic acid paranemic structures: a promising building block for functional nanomaterials in biomedical and bionanotechnological applications</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><description>Over the past few decades, DNA has been recognized as a powerful self-assembling material capable of crafting supramolecular nanoarchitectures with quasi-angstrom precision, which promises various applications in the fields of materials science, nanoengineering, and biomedical science. Notable structural features include biocompatibility, biodegradability, high digital encodability by Watson-Crick base pairing, nanoscale dimension, and surface addressability. Bottom-up fabrication of complex DNA nanostructures relies on the design of fundamental DNA motifs, including parallel (PX) and antiparallel (AX) crossovers. However, paranemic or PX motifs have not been thoroughly explored for the construction of DNA-based nanostructures compared to AX motifs. In this review, we summarize the developments of PX-based DNA nanostructures, highlight the advantages as well as challenges of PX-based assemblies, and give an overview of the structural and chemical features that lend their utilization in a variety of applications. The works presented cover PX-based DNA nanostructures in biological systems, dynamic systems, and biomedical contexts. The possible future advances of PX structures and applications are also summarized, discussed, and postulated. This review highlights the PX-based DNA nanostructures in biological systems, dynamic systems, and biomedical contexts.</description><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biomedical materials</subject><subject>Construction</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Dynamical systems</subject><subject>Fabrication</subject><subject>Functional materials</subject><subject>Materials science</subject><subject>Nanoengineering</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nucleic acids</subject><subject>Reviews</subject><subject>Self-assembly</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkU1r3DAQhk1oIEuSS-8BQS-lsMlI8mdvbdp8QEguG-jNyKPxRltZciX7kD-R3xztbkkgc9C8wzwaeHmz7DOHcw6yudBi6gBKKNYH2UJAAcuq4PWnNw1_jrLTGDeQquZlLfNF9nI_oyWDTKHRbFRBORrSGKcw4zQHit-ZYmPwg4nGrVk3G6t3wnr8y3ofWD87nIx3yjKnnB_URMEoG5lxrDN-IG0w7ZTT23GLTIRPzlu_3i_G0SaxPRFPssM-faXT__04e7z6vbq8Wd49XN9e_rhbouT5tERd5Bxy0ZOuoZGqpAKBlO47LUBSJ7EWRUlEPBdVBYL6qqkKLGXHOfQC5XH2dX83Ofs3U5za5A_J2mTfz7EVZVNBI2qQCf3yAd34OSS3iap4XYo6vYn6tqcw-BgD9e0YzKDCc8uh3abT_hKrn7t0rhN8todDxDfuPT35CpoejyY</recordid><startdate>20220928</startdate><enddate>20220928</enddate><creator>Lee, Jung Yeon</creator><creator>Yang, Qi</creator><creator>Chang, Xu</creator><creator>Wisniewski, Henry</creator><creator>Olivera, Tiffany R</creator><creator>Saji, Minu</creator><creator>Kim, Suchan</creator><creator>Perumal, Devanathan</creator><creator>Zhang, Fei</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3177-7547</orcidid></search><sort><creationdate>20220928</creationdate><title>Nucleic acid paranemic structures: a promising building block for functional nanomaterials in biomedical and bionanotechnological applications</title><author>Lee, Jung Yeon ; Yang, Qi ; Chang, Xu ; Wisniewski, Henry ; Olivera, Tiffany R ; Saji, Minu ; Kim, Suchan ; Perumal, Devanathan ; Zhang, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-cd541042fed8093a6e5c0eadfbd203eb3c8256eee1427702ef7975c63b110f2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biomedical materials</topic><topic>Construction</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Dynamical systems</topic><topic>Fabrication</topic><topic>Functional materials</topic><topic>Materials science</topic><topic>Nanoengineering</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nucleic acids</topic><topic>Reviews</topic><topic>Self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jung Yeon</creatorcontrib><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Chang, Xu</creatorcontrib><creatorcontrib>Wisniewski, Henry</creatorcontrib><creatorcontrib>Olivera, Tiffany R</creatorcontrib><creatorcontrib>Saji, Minu</creatorcontrib><creatorcontrib>Kim, Suchan</creatorcontrib><creatorcontrib>Perumal, Devanathan</creatorcontrib><creatorcontrib>Zhang, Fei</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jung Yeon</au><au>Yang, Qi</au><au>Chang, Xu</au><au>Wisniewski, Henry</au><au>Olivera, Tiffany R</au><au>Saji, Minu</au><au>Kim, Suchan</au><au>Perumal, Devanathan</au><au>Zhang, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nucleic acid paranemic structures: a promising building block for functional nanomaterials in biomedical and bionanotechnological applications</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><date>2022-09-28</date><risdate>2022</risdate><volume>1</volume><issue>37</issue><spage>746</spage><epage>7472</epage><pages>746-7472</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>Over the past few decades, DNA has been recognized as a powerful self-assembling material capable of crafting supramolecular nanoarchitectures with quasi-angstrom precision, which promises various applications in the fields of materials science, nanoengineering, and biomedical science. Notable structural features include biocompatibility, biodegradability, high digital encodability by Watson-Crick base pairing, nanoscale dimension, and surface addressability. Bottom-up fabrication of complex DNA nanostructures relies on the design of fundamental DNA motifs, including parallel (PX) and antiparallel (AX) crossovers. However, paranemic or PX motifs have not been thoroughly explored for the construction of DNA-based nanostructures compared to AX motifs. In this review, we summarize the developments of PX-based DNA nanostructures, highlight the advantages as well as challenges of PX-based assemblies, and give an overview of the structural and chemical features that lend their utilization in a variety of applications. The works presented cover PX-based DNA nanostructures in biological systems, dynamic systems, and biomedical contexts. The possible future advances of PX structures and applications are also summarized, discussed, and postulated. This review highlights the PX-based DNA nanostructures in biological systems, dynamic systems, and biomedical contexts.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2tb00605g</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3177-7547</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-750X
ispartof Journal of materials chemistry. B, Materials for biology and medicine, 2022-09, Vol.1 (37), p.746-7472
issn 2050-750X
2050-7518
language eng
recordid cdi_rsc_primary_d2tb00605g
source Royal Society of Chemistry
subjects Biocompatibility
Biodegradability
Biodegradation
Biomedical materials
Construction
Deoxyribonucleic acid
DNA
Dynamical systems
Fabrication
Functional materials
Materials science
Nanoengineering
Nanomaterials
Nanostructure
Nanotechnology
Nucleic acids
Reviews
Self-assembly
title Nucleic acid paranemic structures: a promising building block for functional nanomaterials in biomedical and bionanotechnological applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nucleic%20acid%20paranemic%20structures:%20a%20promising%20building%20block%20for%20functional%20nanomaterials%20in%20biomedical%20and%20bionanotechnological%20applications&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Lee,%20Jung%20Yeon&rft.date=2022-09-28&rft.volume=1&rft.issue=37&rft.spage=746&rft.epage=7472&rft.pages=746-7472&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d2tb00605g&rft_dat=%3Cproquest_rsc_p%3E2718628718%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-cd541042fed8093a6e5c0eadfbd203eb3c8256eee1427702ef7975c63b110f2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2718628718&rft_id=info:pmid/&rfr_iscdi=true