Loading…
Nucleic acid paranemic structures: a promising building block for functional nanomaterials in biomedical and bionanotechnological applications
Over the past few decades, DNA has been recognized as a powerful self-assembling material capable of crafting supramolecular nanoarchitectures with quasi-angstrom precision, which promises various applications in the fields of materials science, nanoengineering, and biomedical science. Notable struc...
Saved in:
Published in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2022-09, Vol.1 (37), p.746-7472 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c314t-cd541042fed8093a6e5c0eadfbd203eb3c8256eee1427702ef7975c63b110f2c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c314t-cd541042fed8093a6e5c0eadfbd203eb3c8256eee1427702ef7975c63b110f2c3 |
container_end_page | 7472 |
container_issue | 37 |
container_start_page | 746 |
container_title | Journal of materials chemistry. B, Materials for biology and medicine |
container_volume | 1 |
creator | Lee, Jung Yeon Yang, Qi Chang, Xu Wisniewski, Henry Olivera, Tiffany R Saji, Minu Kim, Suchan Perumal, Devanathan Zhang, Fei |
description | Over the past few decades, DNA has been recognized as a powerful self-assembling material capable of crafting supramolecular nanoarchitectures with quasi-angstrom precision, which promises various applications in the fields of materials science, nanoengineering, and biomedical science. Notable structural features include biocompatibility, biodegradability, high digital encodability by Watson-Crick base pairing, nanoscale dimension, and surface addressability. Bottom-up fabrication of complex DNA nanostructures relies on the design of fundamental DNA motifs, including parallel (PX) and antiparallel (AX) crossovers. However, paranemic or PX motifs have not been thoroughly explored for the construction of DNA-based nanostructures compared to AX motifs. In this review, we summarize the developments of PX-based DNA nanostructures, highlight the advantages as well as challenges of PX-based assemblies, and give an overview of the structural and chemical features that lend their utilization in a variety of applications. The works presented cover PX-based DNA nanostructures in biological systems, dynamic systems, and biomedical contexts. The possible future advances of PX structures and applications are also summarized, discussed, and postulated.
This review highlights the PX-based DNA nanostructures in biological systems, dynamic systems, and biomedical contexts. |
doi_str_mv | 10.1039/d2tb00605g |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d2tb00605g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718628718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-cd541042fed8093a6e5c0eadfbd203eb3c8256eee1427702ef7975c63b110f2c3</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhk1oIEuSS-8BQS-lsMlI8mdvbdp8QEguG-jNyKPxRltZciX7kD-R3xztbkkgc9C8wzwaeHmz7DOHcw6yudBi6gBKKNYH2UJAAcuq4PWnNw1_jrLTGDeQquZlLfNF9nI_oyWDTKHRbFRBORrSGKcw4zQHit-ZYmPwg4nGrVk3G6t3wnr8y3ofWD87nIx3yjKnnB_URMEoG5lxrDN-IG0w7ZTT23GLTIRPzlu_3i_G0SaxPRFPssM-faXT__04e7z6vbq8Wd49XN9e_rhbouT5tERd5Bxy0ZOuoZGqpAKBlO47LUBSJ7EWRUlEPBdVBYL6qqkKLGXHOfQC5XH2dX83Ofs3U5za5A_J2mTfz7EVZVNBI2qQCf3yAd34OSS3iap4XYo6vYn6tqcw-BgD9e0YzKDCc8uh3abT_hKrn7t0rhN8todDxDfuPT35CpoejyY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718628718</pqid></control><display><type>article</type><title>Nucleic acid paranemic structures: a promising building block for functional nanomaterials in biomedical and bionanotechnological applications</title><source>Royal Society of Chemistry</source><creator>Lee, Jung Yeon ; Yang, Qi ; Chang, Xu ; Wisniewski, Henry ; Olivera, Tiffany R ; Saji, Minu ; Kim, Suchan ; Perumal, Devanathan ; Zhang, Fei</creator><creatorcontrib>Lee, Jung Yeon ; Yang, Qi ; Chang, Xu ; Wisniewski, Henry ; Olivera, Tiffany R ; Saji, Minu ; Kim, Suchan ; Perumal, Devanathan ; Zhang, Fei</creatorcontrib><description>Over the past few decades, DNA has been recognized as a powerful self-assembling material capable of crafting supramolecular nanoarchitectures with quasi-angstrom precision, which promises various applications in the fields of materials science, nanoengineering, and biomedical science. Notable structural features include biocompatibility, biodegradability, high digital encodability by Watson-Crick base pairing, nanoscale dimension, and surface addressability. Bottom-up fabrication of complex DNA nanostructures relies on the design of fundamental DNA motifs, including parallel (PX) and antiparallel (AX) crossovers. However, paranemic or PX motifs have not been thoroughly explored for the construction of DNA-based nanostructures compared to AX motifs. In this review, we summarize the developments of PX-based DNA nanostructures, highlight the advantages as well as challenges of PX-based assemblies, and give an overview of the structural and chemical features that lend their utilization in a variety of applications. The works presented cover PX-based DNA nanostructures in biological systems, dynamic systems, and biomedical contexts. The possible future advances of PX structures and applications are also summarized, discussed, and postulated.
This review highlights the PX-based DNA nanostructures in biological systems, dynamic systems, and biomedical contexts.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d2tb00605g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Biocompatibility ; Biodegradability ; Biodegradation ; Biomedical materials ; Construction ; Deoxyribonucleic acid ; DNA ; Dynamical systems ; Fabrication ; Functional materials ; Materials science ; Nanoengineering ; Nanomaterials ; Nanostructure ; Nanotechnology ; Nucleic acids ; Reviews ; Self-assembly</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2022-09, Vol.1 (37), p.746-7472</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-cd541042fed8093a6e5c0eadfbd203eb3c8256eee1427702ef7975c63b110f2c3</citedby><cites>FETCH-LOGICAL-c314t-cd541042fed8093a6e5c0eadfbd203eb3c8256eee1427702ef7975c63b110f2c3</cites><orcidid>0000-0002-3177-7547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Jung Yeon</creatorcontrib><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Chang, Xu</creatorcontrib><creatorcontrib>Wisniewski, Henry</creatorcontrib><creatorcontrib>Olivera, Tiffany R</creatorcontrib><creatorcontrib>Saji, Minu</creatorcontrib><creatorcontrib>Kim, Suchan</creatorcontrib><creatorcontrib>Perumal, Devanathan</creatorcontrib><creatorcontrib>Zhang, Fei</creatorcontrib><title>Nucleic acid paranemic structures: a promising building block for functional nanomaterials in biomedical and bionanotechnological applications</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><description>Over the past few decades, DNA has been recognized as a powerful self-assembling material capable of crafting supramolecular nanoarchitectures with quasi-angstrom precision, which promises various applications in the fields of materials science, nanoengineering, and biomedical science. Notable structural features include biocompatibility, biodegradability, high digital encodability by Watson-Crick base pairing, nanoscale dimension, and surface addressability. Bottom-up fabrication of complex DNA nanostructures relies on the design of fundamental DNA motifs, including parallel (PX) and antiparallel (AX) crossovers. However, paranemic or PX motifs have not been thoroughly explored for the construction of DNA-based nanostructures compared to AX motifs. In this review, we summarize the developments of PX-based DNA nanostructures, highlight the advantages as well as challenges of PX-based assemblies, and give an overview of the structural and chemical features that lend their utilization in a variety of applications. The works presented cover PX-based DNA nanostructures in biological systems, dynamic systems, and biomedical contexts. The possible future advances of PX structures and applications are also summarized, discussed, and postulated.
This review highlights the PX-based DNA nanostructures in biological systems, dynamic systems, and biomedical contexts.</description><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biomedical materials</subject><subject>Construction</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Dynamical systems</subject><subject>Fabrication</subject><subject>Functional materials</subject><subject>Materials science</subject><subject>Nanoengineering</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nucleic acids</subject><subject>Reviews</subject><subject>Self-assembly</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkU1r3DAQhk1oIEuSS-8BQS-lsMlI8mdvbdp8QEguG-jNyKPxRltZciX7kD-R3xztbkkgc9C8wzwaeHmz7DOHcw6yudBi6gBKKNYH2UJAAcuq4PWnNw1_jrLTGDeQquZlLfNF9nI_oyWDTKHRbFRBORrSGKcw4zQHit-ZYmPwg4nGrVk3G6t3wnr8y3ofWD87nIx3yjKnnB_URMEoG5lxrDN-IG0w7ZTT23GLTIRPzlu_3i_G0SaxPRFPssM-faXT__04e7z6vbq8Wd49XN9e_rhbouT5tERd5Bxy0ZOuoZGqpAKBlO47LUBSJ7EWRUlEPBdVBYL6qqkKLGXHOfQC5XH2dX83Ofs3U5za5A_J2mTfz7EVZVNBI2qQCf3yAd34OSS3iap4XYo6vYn6tqcw-BgD9e0YzKDCc8uh3abT_hKrn7t0rhN8todDxDfuPT35CpoejyY</recordid><startdate>20220928</startdate><enddate>20220928</enddate><creator>Lee, Jung Yeon</creator><creator>Yang, Qi</creator><creator>Chang, Xu</creator><creator>Wisniewski, Henry</creator><creator>Olivera, Tiffany R</creator><creator>Saji, Minu</creator><creator>Kim, Suchan</creator><creator>Perumal, Devanathan</creator><creator>Zhang, Fei</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3177-7547</orcidid></search><sort><creationdate>20220928</creationdate><title>Nucleic acid paranemic structures: a promising building block for functional nanomaterials in biomedical and bionanotechnological applications</title><author>Lee, Jung Yeon ; Yang, Qi ; Chang, Xu ; Wisniewski, Henry ; Olivera, Tiffany R ; Saji, Minu ; Kim, Suchan ; Perumal, Devanathan ; Zhang, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-cd541042fed8093a6e5c0eadfbd203eb3c8256eee1427702ef7975c63b110f2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biomedical materials</topic><topic>Construction</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Dynamical systems</topic><topic>Fabrication</topic><topic>Functional materials</topic><topic>Materials science</topic><topic>Nanoengineering</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nucleic acids</topic><topic>Reviews</topic><topic>Self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jung Yeon</creatorcontrib><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Chang, Xu</creatorcontrib><creatorcontrib>Wisniewski, Henry</creatorcontrib><creatorcontrib>Olivera, Tiffany R</creatorcontrib><creatorcontrib>Saji, Minu</creatorcontrib><creatorcontrib>Kim, Suchan</creatorcontrib><creatorcontrib>Perumal, Devanathan</creatorcontrib><creatorcontrib>Zhang, Fei</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jung Yeon</au><au>Yang, Qi</au><au>Chang, Xu</au><au>Wisniewski, Henry</au><au>Olivera, Tiffany R</au><au>Saji, Minu</au><au>Kim, Suchan</au><au>Perumal, Devanathan</au><au>Zhang, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nucleic acid paranemic structures: a promising building block for functional nanomaterials in biomedical and bionanotechnological applications</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><date>2022-09-28</date><risdate>2022</risdate><volume>1</volume><issue>37</issue><spage>746</spage><epage>7472</epage><pages>746-7472</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>Over the past few decades, DNA has been recognized as a powerful self-assembling material capable of crafting supramolecular nanoarchitectures with quasi-angstrom precision, which promises various applications in the fields of materials science, nanoengineering, and biomedical science. Notable structural features include biocompatibility, biodegradability, high digital encodability by Watson-Crick base pairing, nanoscale dimension, and surface addressability. Bottom-up fabrication of complex DNA nanostructures relies on the design of fundamental DNA motifs, including parallel (PX) and antiparallel (AX) crossovers. However, paranemic or PX motifs have not been thoroughly explored for the construction of DNA-based nanostructures compared to AX motifs. In this review, we summarize the developments of PX-based DNA nanostructures, highlight the advantages as well as challenges of PX-based assemblies, and give an overview of the structural and chemical features that lend their utilization in a variety of applications. The works presented cover PX-based DNA nanostructures in biological systems, dynamic systems, and biomedical contexts. The possible future advances of PX structures and applications are also summarized, discussed, and postulated.
This review highlights the PX-based DNA nanostructures in biological systems, dynamic systems, and biomedical contexts.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2tb00605g</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3177-7547</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-750X |
ispartof | Journal of materials chemistry. B, Materials for biology and medicine, 2022-09, Vol.1 (37), p.746-7472 |
issn | 2050-750X 2050-7518 |
language | eng |
recordid | cdi_rsc_primary_d2tb00605g |
source | Royal Society of Chemistry |
subjects | Biocompatibility Biodegradability Biodegradation Biomedical materials Construction Deoxyribonucleic acid DNA Dynamical systems Fabrication Functional materials Materials science Nanoengineering Nanomaterials Nanostructure Nanotechnology Nucleic acids Reviews Self-assembly |
title | Nucleic acid paranemic structures: a promising building block for functional nanomaterials in biomedical and bionanotechnological applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nucleic%20acid%20paranemic%20structures:%20a%20promising%20building%20block%20for%20functional%20nanomaterials%20in%20biomedical%20and%20bionanotechnological%20applications&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Lee,%20Jung%20Yeon&rft.date=2022-09-28&rft.volume=1&rft.issue=37&rft.spage=746&rft.epage=7472&rft.pages=746-7472&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d2tb00605g&rft_dat=%3Cproquest_rsc_p%3E2718628718%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-cd541042fed8093a6e5c0eadfbd203eb3c8256eee1427702ef7975c63b110f2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2718628718&rft_id=info:pmid/&rfr_iscdi=true |