Loading…

An electrochemiluminescence immunosensor based on multipath signal catalytic amplification integrated in a Cu-PEI-Pt/AuNC nanocomposite

Here, the nanocomposite Cu 2+ -PEI-Pt/AuNCs with multipath signal catalytic amplification for a peroxydisulfate-dissolved oxygen electrochemiluminescence (ECL) system was prepared to fabricate a sensitive ECL immunosensor. Using polyethyleneimine (PEI), a linear polymer, as the reductant and templat...

Full description

Saved in:
Bibliographic Details
Published in:Analyst (London) 2023-07, Vol.148 (14), p.3354-3358
Main Authors: Wang, Haijun, Song, Yuhang, Chai, Yaqin, Yuan, Ruo
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Here, the nanocomposite Cu 2+ -PEI-Pt/AuNCs with multipath signal catalytic amplification for a peroxydisulfate-dissolved oxygen electrochemiluminescence (ECL) system was prepared to fabricate a sensitive ECL immunosensor. Using polyethyleneimine (PEI), a linear polymer, as the reductant and template, Pt/Au nanochains (Pt/AuNCs) were prepared. Abundant PEI would adsorb on the surface of Pt/AuNCs via Pt-N or Au-N bonds, and further coordinate with Cu 2+ to give the final nanocomposite Cu 2+ -PEI-Pt/AuNCs which possessed multipath signal catalytic amplification for the ECL of the peroxydisulfate-dissolved oxygen system in the presence of H 2 O 2 . First, PEI, as an effective co-reactant, could directly enhance the ECL intensity. Second, Pt/AuNCs could not only act as a mimicking enzyme to promote the decomposition of H 2 O 2 to produce more oxygen in situ , but also act as an effective co-reaction accelerator to facilitate the generation of more co-reactive intermediate groups from peroxydisulfate, resulting in an obviously enhanced ECL signal. Then, Cu 2+ could also accelerate the decomposition of H 2 O 2 to produce more oxygen in situ , leading to a further improvement of the ECL response. Using Cu 2+ -PEI-Pt/AuNCs as a loading platform, a sandwiched ECL immunosensor was fabricated. As a result, the obtained ECL immunosensor possessed an ultra-sensitive detection performance for α-1-fetoprotein, providing effective information on the diagnosis and treatment of related diseases. In this work, Cu 2+ -PEI-Pt/AuNCs, a chain-like nanocomposite integrated with multipath signal catalytic amplification for the ECL of a peroxydisulfate-dissolved oxygen ECL system, was prepared to fabricate a sensitive ECL immunosensor.
ISSN:0003-2654
1364-5528
DOI:10.1039/d3an00721a