Loading…
Exploring fingerprints of ultrafast structural dynamics in molecular solutions with an X-ray laser
We apply ultrashort X-ray laser pulses to track optically excited structural dynamics of [Ir 2 (dimen) 4 ] 2+ molecules in solution. In our exploratory study we determine angular correlations in the scattered X-rays, which comprise a complex fingerprint of the ultrafast dynamics. Model-assisted anal...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2023-09, Vol.25 (35), p.23417-23434 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We apply ultrashort X-ray laser pulses to track optically excited structural dynamics of [Ir
2
(dimen)
4
]
2+
molecules in solution. In our exploratory study we determine angular correlations in the scattered X-rays, which comprise a complex fingerprint of the ultrafast dynamics. Model-assisted analysis of the experimental correlation data allows us to elucidate various aspects of the photoinduced changes in the excited molecular ensembles. We unambiguously identify that in our experiment the photoinduced transition dipole moments in [Ir
2
(dimen)
4
]
2+
molecules are oriented perpendicular to the Ir-Ir bond. The analysis also shows that the ground state conformer of [Ir
2
(dimen)
4
]
2+
with a larger Ir-Ir distance is mostly responsible for the formation of the excited state. We also reveal that the ensemble of solute molecules can be characterized with a substantial structural heterogeneity due to solvent influence. The proposed X-ray correlation approach offers an alternative path for studies of ultrafast structural dynamics of molecular ensembles in the liquid and gas phases.
Angular correlation functions are applied to study photoinduced ultrafast dynamics of a molecular solution with an X-ray laser. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/d3cp01257c |