Loading…
Quantifying interfacial energetics of 2D semiconductor electrodes using spectroelectrochemistry and many-body theory
Hot carrier extraction occurs in 2D semiconductor photoelectrochemical cells [Austin et al. , Proc. Natl. Acad. Sci. U. S. A., 2023, 120 , e2220333120]. Boosting the energy efficiency of hot carrier-based photoelectrochemical cells requires maximizing the hot carrier extraction rate relative to the...
Saved in:
Published in: | Energy & environmental science 2023-10, Vol.16 (1), p.4522-4529 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hot carrier extraction occurs in 2D semiconductor photoelectrochemical cells [Austin
et al.
, Proc. Natl. Acad. Sci. U. S. A., 2023,
120
, e2220333120]. Boosting the energy efficiency of hot carrier-based photoelectrochemical cells requires maximizing the hot carrier extraction rate relative to the cooling rate. One could expect to tune the hot carrier extraction rate constant (
k
ET
)
via
a Marcus-Gerischer relationship, where
k
ET
depends exponentially on Δ
G
°′ (the standard driving force for interfacial electron transfer). Δ
G
°′ is defined as the energy level difference between a semiconductor's conduction/valence band (CB/VB) minima/maxima and the redox potential of reactant molecules in solution. A major challenge in the electrochemistry community is that conventional approaches to quantify Δ
G
°′ for bulk semiconductors (
e.g.
, Mott-Schottky measurements) cannot be directly applied to ultrathin 2D electrodes. The specific problem is that enormous electronic bandgap changes (>0.5 eV) and CB/VB edge movement take place upon illuminating or applying a potential to a 2D semiconductor electrode. Here, we develop an
in situ
absorbance spectroscopy approach to quantify interfacial energetics of 2D semiconductor/electrolyte interfaces using a minimal many-body model. Our results show that band edge movement in monolayer MoS
2
is significant (0.2-0.5 eV) over a narrow range of applied potentials (0.2-0.3 V). Such large band edge shifts could change
k
ET
by a factor of 10-100, which has important consequences for practical solar energy conversion applications. We discuss the current experimental and theoretical knowledge gaps that must be addressed to minimize the error in the proposed optical approach.
In situ
optical measurements can reveal bandgap changes in monolayer semiconductor electrodes. |
---|---|
ISSN: | 1754-5692 1754-5706 |
DOI: | 10.1039/d3ee01165h |