Loading…
Reprogramming the metabolism of oleaginous yeast for sustainably biosynthesizing the anticarcinogen precursor germacrene A
Due to the diverse structures and broad functions of terpenes, microbial biosynthesis of these compounds has been favored as a sustainable alternative to phytoextraction and chemosynthesis. Here, systematic metabolic engineering strategies were explored in the oleaginous yeast Yarrowia lipolytica fo...
Saved in:
Published in: | Green chemistry : an international journal and green chemistry resource : GC 2023-10, Vol.25 (2), p.7988-7997 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c281t-2083bcbb390c1e28532d349afdb3bb09426833fa9163c98439ef8262e3bcb78d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c281t-2083bcbb390c1e28532d349afdb3bb09426833fa9163c98439ef8262e3bcb78d3 |
container_end_page | 7997 |
container_issue | 2 |
container_start_page | 7988 |
container_title | Green chemistry : an international journal and green chemistry resource : GC |
container_volume | 25 |
creator | Liu, Qi Zhang, Ge Su, Liqiu Liu, Pi Jia, Shiru Wang, Qinhong Dai, Zongjie |
description | Due to the diverse structures and broad functions of terpenes, microbial biosynthesis of these compounds has been favored as a sustainable alternative to phytoextraction and chemosynthesis. Here, systematic metabolic engineering strategies were explored in the oleaginous yeast
Yarrowia lipolytica
for hyperproducing sesquiterpene germacrene A which serves as an important intermediate of numerous anticarcinogens. By identifying the most efficient germacrene A synthase to date, reconstructing the endogenous mevalonate pathway and extending the cytosolic acetyl-CoA pool by regulating lipid metabolism, the resulting strain overproduced 2.794 g L
−1
germacrene A in shake flasks, which represented a 38-fold improvement over the initial strain. The engineered strain was subsequently capable of producing 39 g L
−1
germacrene A at a yield of 0.181 g g
−1
glucose during optimized bioreactor fermentation, with this being the highest sesquiterpene production level reported to date for
Y. lipolytica
. These results demonstrate that reprogramming the metabolism of the host cell by systematic metabolic engineering plays an essential role in diverting its inherent metabolic fluxes for sesquiterpene biosynthesis and these approaches can be extensively applied for synthesizing natural terpenes.
The highest titer of the anticancer precursor sesquiterpene germacrene A was observed in oleaginous yeast using multi-layered systematic metabolic engineering strategies. |
doi_str_mv | 10.1039/d3gc01661g |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d3gc01661g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2877301961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-2083bcbb390c1e28532d349afdb3bb09426833fa9163c98439ef8262e3bcb78d3</originalsourceid><addsrcrecordid>eNpFkMFLwzAUh4MoOKcX70LAm1BN-mqaHMfUKQwE0XNJ0rRmtMlM2sP215s5naf3Dt_3e7wfQpeU3FIC4q6GVhPKGG2P0IQWDDKRl-T4sLP8FJ3FuCKE0pIVE7R9M-vg2yD73roWD58G92aQync29tg32HdGttb5MeKNkXHAjQ84jnGQ1knVbbCyPm5cEqPd_kVIN1gtg05eaxxeB6PHEJPYmtBLHYwzeHaOThrZRXPxO6fo4-nxff6cLV8XL_PZMtM5p0OWEw5KKwWCaGpyfg95DYWQTa1AKSKKnHGARgrKQAtegDANT4-anVXyGqboep-bHv0aTRyqlR-DSyernJclECoYTdTNntLBxxhMU62D7WXYVJRUu26rB1jMf7pdJPhqD4eoD9x_9_ANGvh47A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2877301961</pqid></control><display><type>article</type><title>Reprogramming the metabolism of oleaginous yeast for sustainably biosynthesizing the anticarcinogen precursor germacrene A</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Liu, Qi ; Zhang, Ge ; Su, Liqiu ; Liu, Pi ; Jia, Shiru ; Wang, Qinhong ; Dai, Zongjie</creator><creatorcontrib>Liu, Qi ; Zhang, Ge ; Su, Liqiu ; Liu, Pi ; Jia, Shiru ; Wang, Qinhong ; Dai, Zongjie</creatorcontrib><description>Due to the diverse structures and broad functions of terpenes, microbial biosynthesis of these compounds has been favored as a sustainable alternative to phytoextraction and chemosynthesis. Here, systematic metabolic engineering strategies were explored in the oleaginous yeast
Yarrowia lipolytica
for hyperproducing sesquiterpene germacrene A which serves as an important intermediate of numerous anticarcinogens. By identifying the most efficient germacrene A synthase to date, reconstructing the endogenous mevalonate pathway and extending the cytosolic acetyl-CoA pool by regulating lipid metabolism, the resulting strain overproduced 2.794 g L
−1
germacrene A in shake flasks, which represented a 38-fold improvement over the initial strain. The engineered strain was subsequently capable of producing 39 g L
−1
germacrene A at a yield of 0.181 g g
−1
glucose during optimized bioreactor fermentation, with this being the highest sesquiterpene production level reported to date for
Y. lipolytica
. These results demonstrate that reprogramming the metabolism of the host cell by systematic metabolic engineering plays an essential role in diverting its inherent metabolic fluxes for sesquiterpene biosynthesis and these approaches can be extensively applied for synthesizing natural terpenes.
The highest titer of the anticancer precursor sesquiterpene germacrene A was observed in oleaginous yeast using multi-layered systematic metabolic engineering strategies.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/d3gc01661g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bioreactors ; Biosynthesis ; Cell culture ; Chemosynthesis ; Fermentation ; Flasks ; Germacrene ; Green chemistry ; Lipid metabolism ; Lipids ; Metabolic engineering ; Metabolism ; Mevalonate pathway ; Microorganisms ; Terpenes ; Yeast ; Yeasts</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2023-10, Vol.25 (2), p.7988-7997</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-2083bcbb390c1e28532d349afdb3bb09426833fa9163c98439ef8262e3bcb78d3</citedby><cites>FETCH-LOGICAL-c281t-2083bcbb390c1e28532d349afdb3bb09426833fa9163c98439ef8262e3bcb78d3</cites><orcidid>0000-0001-8171-8767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Zhang, Ge</creatorcontrib><creatorcontrib>Su, Liqiu</creatorcontrib><creatorcontrib>Liu, Pi</creatorcontrib><creatorcontrib>Jia, Shiru</creatorcontrib><creatorcontrib>Wang, Qinhong</creatorcontrib><creatorcontrib>Dai, Zongjie</creatorcontrib><title>Reprogramming the metabolism of oleaginous yeast for sustainably biosynthesizing the anticarcinogen precursor germacrene A</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>Due to the diverse structures and broad functions of terpenes, microbial biosynthesis of these compounds has been favored as a sustainable alternative to phytoextraction and chemosynthesis. Here, systematic metabolic engineering strategies were explored in the oleaginous yeast
Yarrowia lipolytica
for hyperproducing sesquiterpene germacrene A which serves as an important intermediate of numerous anticarcinogens. By identifying the most efficient germacrene A synthase to date, reconstructing the endogenous mevalonate pathway and extending the cytosolic acetyl-CoA pool by regulating lipid metabolism, the resulting strain overproduced 2.794 g L
−1
germacrene A in shake flasks, which represented a 38-fold improvement over the initial strain. The engineered strain was subsequently capable of producing 39 g L
−1
germacrene A at a yield of 0.181 g g
−1
glucose during optimized bioreactor fermentation, with this being the highest sesquiterpene production level reported to date for
Y. lipolytica
. These results demonstrate that reprogramming the metabolism of the host cell by systematic metabolic engineering plays an essential role in diverting its inherent metabolic fluxes for sesquiterpene biosynthesis and these approaches can be extensively applied for synthesizing natural terpenes.
The highest titer of the anticancer precursor sesquiterpene germacrene A was observed in oleaginous yeast using multi-layered systematic metabolic engineering strategies.</description><subject>Bioreactors</subject><subject>Biosynthesis</subject><subject>Cell culture</subject><subject>Chemosynthesis</subject><subject>Fermentation</subject><subject>Flasks</subject><subject>Germacrene</subject><subject>Green chemistry</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Metabolic engineering</subject><subject>Metabolism</subject><subject>Mevalonate pathway</subject><subject>Microorganisms</subject><subject>Terpenes</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkMFLwzAUh4MoOKcX70LAm1BN-mqaHMfUKQwE0XNJ0rRmtMlM2sP215s5naf3Dt_3e7wfQpeU3FIC4q6GVhPKGG2P0IQWDDKRl-T4sLP8FJ3FuCKE0pIVE7R9M-vg2yD73roWD58G92aQync29tg32HdGttb5MeKNkXHAjQ84jnGQ1knVbbCyPm5cEqPd_kVIN1gtg05eaxxeB6PHEJPYmtBLHYwzeHaOThrZRXPxO6fo4-nxff6cLV8XL_PZMtM5p0OWEw5KKwWCaGpyfg95DYWQTa1AKSKKnHGARgrKQAtegDANT4-anVXyGqboep-bHv0aTRyqlR-DSyernJclECoYTdTNntLBxxhMU62D7WXYVJRUu26rB1jMf7pdJPhqD4eoD9x_9_ANGvh47A</recordid><startdate>20231016</startdate><enddate>20231016</enddate><creator>Liu, Qi</creator><creator>Zhang, Ge</creator><creator>Su, Liqiu</creator><creator>Liu, Pi</creator><creator>Jia, Shiru</creator><creator>Wang, Qinhong</creator><creator>Dai, Zongjie</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-8171-8767</orcidid></search><sort><creationdate>20231016</creationdate><title>Reprogramming the metabolism of oleaginous yeast for sustainably biosynthesizing the anticarcinogen precursor germacrene A</title><author>Liu, Qi ; Zhang, Ge ; Su, Liqiu ; Liu, Pi ; Jia, Shiru ; Wang, Qinhong ; Dai, Zongjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-2083bcbb390c1e28532d349afdb3bb09426833fa9163c98439ef8262e3bcb78d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bioreactors</topic><topic>Biosynthesis</topic><topic>Cell culture</topic><topic>Chemosynthesis</topic><topic>Fermentation</topic><topic>Flasks</topic><topic>Germacrene</topic><topic>Green chemistry</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Metabolic engineering</topic><topic>Metabolism</topic><topic>Mevalonate pathway</topic><topic>Microorganisms</topic><topic>Terpenes</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Zhang, Ge</creatorcontrib><creatorcontrib>Su, Liqiu</creatorcontrib><creatorcontrib>Liu, Pi</creatorcontrib><creatorcontrib>Jia, Shiru</creatorcontrib><creatorcontrib>Wang, Qinhong</creatorcontrib><creatorcontrib>Dai, Zongjie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qi</au><au>Zhang, Ge</au><au>Su, Liqiu</au><au>Liu, Pi</au><au>Jia, Shiru</au><au>Wang, Qinhong</au><au>Dai, Zongjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reprogramming the metabolism of oleaginous yeast for sustainably biosynthesizing the anticarcinogen precursor germacrene A</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2023-10-16</date><risdate>2023</risdate><volume>25</volume><issue>2</issue><spage>7988</spage><epage>7997</epage><pages>7988-7997</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>Due to the diverse structures and broad functions of terpenes, microbial biosynthesis of these compounds has been favored as a sustainable alternative to phytoextraction and chemosynthesis. Here, systematic metabolic engineering strategies were explored in the oleaginous yeast
Yarrowia lipolytica
for hyperproducing sesquiterpene germacrene A which serves as an important intermediate of numerous anticarcinogens. By identifying the most efficient germacrene A synthase to date, reconstructing the endogenous mevalonate pathway and extending the cytosolic acetyl-CoA pool by regulating lipid metabolism, the resulting strain overproduced 2.794 g L
−1
germacrene A in shake flasks, which represented a 38-fold improvement over the initial strain. The engineered strain was subsequently capable of producing 39 g L
−1
germacrene A at a yield of 0.181 g g
−1
glucose during optimized bioreactor fermentation, with this being the highest sesquiterpene production level reported to date for
Y. lipolytica
. These results demonstrate that reprogramming the metabolism of the host cell by systematic metabolic engineering plays an essential role in diverting its inherent metabolic fluxes for sesquiterpene biosynthesis and these approaches can be extensively applied for synthesizing natural terpenes.
The highest titer of the anticancer precursor sesquiterpene germacrene A was observed in oleaginous yeast using multi-layered systematic metabolic engineering strategies.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3gc01661g</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8171-8767</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9262 |
ispartof | Green chemistry : an international journal and green chemistry resource : GC, 2023-10, Vol.25 (2), p.7988-7997 |
issn | 1463-9262 1463-9270 |
language | eng |
recordid | cdi_rsc_primary_d3gc01661g |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Bioreactors Biosynthesis Cell culture Chemosynthesis Fermentation Flasks Germacrene Green chemistry Lipid metabolism Lipids Metabolic engineering Metabolism Mevalonate pathway Microorganisms Terpenes Yeast Yeasts |
title | Reprogramming the metabolism of oleaginous yeast for sustainably biosynthesizing the anticarcinogen precursor germacrene A |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reprogramming%20the%20metabolism%20of%20oleaginous%20yeast%20for%20sustainably%20biosynthesizing%20the%20anticarcinogen%20precursor%20germacrene%20A&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Liu,%20Qi&rft.date=2023-10-16&rft.volume=25&rft.issue=2&rft.spage=7988&rft.epage=7997&rft.pages=7988-7997&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/d3gc01661g&rft_dat=%3Cproquest_rsc_p%3E2877301961%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-2083bcbb390c1e28532d349afdb3bb09426833fa9163c98439ef8262e3bcb78d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2877301961&rft_id=info:pmid/&rfr_iscdi=true |