Loading…

Reprogramming the metabolism of oleaginous yeast for sustainably biosynthesizing the anticarcinogen precursor germacrene A

Due to the diverse structures and broad functions of terpenes, microbial biosynthesis of these compounds has been favored as a sustainable alternative to phytoextraction and chemosynthesis. Here, systematic metabolic engineering strategies were explored in the oleaginous yeast Yarrowia lipolytica fo...

Full description

Saved in:
Bibliographic Details
Published in:Green chemistry : an international journal and green chemistry resource : GC 2023-10, Vol.25 (2), p.7988-7997
Main Authors: Liu, Qi, Zhang, Ge, Su, Liqiu, Liu, Pi, Jia, Shiru, Wang, Qinhong, Dai, Zongjie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c281t-2083bcbb390c1e28532d349afdb3bb09426833fa9163c98439ef8262e3bcb78d3
cites cdi_FETCH-LOGICAL-c281t-2083bcbb390c1e28532d349afdb3bb09426833fa9163c98439ef8262e3bcb78d3
container_end_page 7997
container_issue 2
container_start_page 7988
container_title Green chemistry : an international journal and green chemistry resource : GC
container_volume 25
creator Liu, Qi
Zhang, Ge
Su, Liqiu
Liu, Pi
Jia, Shiru
Wang, Qinhong
Dai, Zongjie
description Due to the diverse structures and broad functions of terpenes, microbial biosynthesis of these compounds has been favored as a sustainable alternative to phytoextraction and chemosynthesis. Here, systematic metabolic engineering strategies were explored in the oleaginous yeast Yarrowia lipolytica for hyperproducing sesquiterpene germacrene A which serves as an important intermediate of numerous anticarcinogens. By identifying the most efficient germacrene A synthase to date, reconstructing the endogenous mevalonate pathway and extending the cytosolic acetyl-CoA pool by regulating lipid metabolism, the resulting strain overproduced 2.794 g L −1 germacrene A in shake flasks, which represented a 38-fold improvement over the initial strain. The engineered strain was subsequently capable of producing 39 g L −1 germacrene A at a yield of 0.181 g g −1 glucose during optimized bioreactor fermentation, with this being the highest sesquiterpene production level reported to date for Y. lipolytica . These results demonstrate that reprogramming the metabolism of the host cell by systematic metabolic engineering plays an essential role in diverting its inherent metabolic fluxes for sesquiterpene biosynthesis and these approaches can be extensively applied for synthesizing natural terpenes. The highest titer of the anticancer precursor sesquiterpene germacrene A was observed in oleaginous yeast using multi-layered systematic metabolic engineering strategies.
doi_str_mv 10.1039/d3gc01661g
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d3gc01661g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2877301961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-2083bcbb390c1e28532d349afdb3bb09426833fa9163c98439ef8262e3bcb78d3</originalsourceid><addsrcrecordid>eNpFkMFLwzAUh4MoOKcX70LAm1BN-mqaHMfUKQwE0XNJ0rRmtMlM2sP215s5naf3Dt_3e7wfQpeU3FIC4q6GVhPKGG2P0IQWDDKRl-T4sLP8FJ3FuCKE0pIVE7R9M-vg2yD73roWD58G92aQync29tg32HdGttb5MeKNkXHAjQ84jnGQ1knVbbCyPm5cEqPd_kVIN1gtg05eaxxeB6PHEJPYmtBLHYwzeHaOThrZRXPxO6fo4-nxff6cLV8XL_PZMtM5p0OWEw5KKwWCaGpyfg95DYWQTa1AKSKKnHGARgrKQAtegDANT4-anVXyGqboep-bHv0aTRyqlR-DSyernJclECoYTdTNntLBxxhMU62D7WXYVJRUu26rB1jMf7pdJPhqD4eoD9x_9_ANGvh47A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2877301961</pqid></control><display><type>article</type><title>Reprogramming the metabolism of oleaginous yeast for sustainably biosynthesizing the anticarcinogen precursor germacrene A</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Liu, Qi ; Zhang, Ge ; Su, Liqiu ; Liu, Pi ; Jia, Shiru ; Wang, Qinhong ; Dai, Zongjie</creator><creatorcontrib>Liu, Qi ; Zhang, Ge ; Su, Liqiu ; Liu, Pi ; Jia, Shiru ; Wang, Qinhong ; Dai, Zongjie</creatorcontrib><description>Due to the diverse structures and broad functions of terpenes, microbial biosynthesis of these compounds has been favored as a sustainable alternative to phytoextraction and chemosynthesis. Here, systematic metabolic engineering strategies were explored in the oleaginous yeast Yarrowia lipolytica for hyperproducing sesquiterpene germacrene A which serves as an important intermediate of numerous anticarcinogens. By identifying the most efficient germacrene A synthase to date, reconstructing the endogenous mevalonate pathway and extending the cytosolic acetyl-CoA pool by regulating lipid metabolism, the resulting strain overproduced 2.794 g L −1 germacrene A in shake flasks, which represented a 38-fold improvement over the initial strain. The engineered strain was subsequently capable of producing 39 g L −1 germacrene A at a yield of 0.181 g g −1 glucose during optimized bioreactor fermentation, with this being the highest sesquiterpene production level reported to date for Y. lipolytica . These results demonstrate that reprogramming the metabolism of the host cell by systematic metabolic engineering plays an essential role in diverting its inherent metabolic fluxes for sesquiterpene biosynthesis and these approaches can be extensively applied for synthesizing natural terpenes. The highest titer of the anticancer precursor sesquiterpene germacrene A was observed in oleaginous yeast using multi-layered systematic metabolic engineering strategies.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/d3gc01661g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bioreactors ; Biosynthesis ; Cell culture ; Chemosynthesis ; Fermentation ; Flasks ; Germacrene ; Green chemistry ; Lipid metabolism ; Lipids ; Metabolic engineering ; Metabolism ; Mevalonate pathway ; Microorganisms ; Terpenes ; Yeast ; Yeasts</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2023-10, Vol.25 (2), p.7988-7997</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-2083bcbb390c1e28532d349afdb3bb09426833fa9163c98439ef8262e3bcb78d3</citedby><cites>FETCH-LOGICAL-c281t-2083bcbb390c1e28532d349afdb3bb09426833fa9163c98439ef8262e3bcb78d3</cites><orcidid>0000-0001-8171-8767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Zhang, Ge</creatorcontrib><creatorcontrib>Su, Liqiu</creatorcontrib><creatorcontrib>Liu, Pi</creatorcontrib><creatorcontrib>Jia, Shiru</creatorcontrib><creatorcontrib>Wang, Qinhong</creatorcontrib><creatorcontrib>Dai, Zongjie</creatorcontrib><title>Reprogramming the metabolism of oleaginous yeast for sustainably biosynthesizing the anticarcinogen precursor germacrene A</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>Due to the diverse structures and broad functions of terpenes, microbial biosynthesis of these compounds has been favored as a sustainable alternative to phytoextraction and chemosynthesis. Here, systematic metabolic engineering strategies were explored in the oleaginous yeast Yarrowia lipolytica for hyperproducing sesquiterpene germacrene A which serves as an important intermediate of numerous anticarcinogens. By identifying the most efficient germacrene A synthase to date, reconstructing the endogenous mevalonate pathway and extending the cytosolic acetyl-CoA pool by regulating lipid metabolism, the resulting strain overproduced 2.794 g L −1 germacrene A in shake flasks, which represented a 38-fold improvement over the initial strain. The engineered strain was subsequently capable of producing 39 g L −1 germacrene A at a yield of 0.181 g g −1 glucose during optimized bioreactor fermentation, with this being the highest sesquiterpene production level reported to date for Y. lipolytica . These results demonstrate that reprogramming the metabolism of the host cell by systematic metabolic engineering plays an essential role in diverting its inherent metabolic fluxes for sesquiterpene biosynthesis and these approaches can be extensively applied for synthesizing natural terpenes. The highest titer of the anticancer precursor sesquiterpene germacrene A was observed in oleaginous yeast using multi-layered systematic metabolic engineering strategies.</description><subject>Bioreactors</subject><subject>Biosynthesis</subject><subject>Cell culture</subject><subject>Chemosynthesis</subject><subject>Fermentation</subject><subject>Flasks</subject><subject>Germacrene</subject><subject>Green chemistry</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Metabolic engineering</subject><subject>Metabolism</subject><subject>Mevalonate pathway</subject><subject>Microorganisms</subject><subject>Terpenes</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkMFLwzAUh4MoOKcX70LAm1BN-mqaHMfUKQwE0XNJ0rRmtMlM2sP215s5naf3Dt_3e7wfQpeU3FIC4q6GVhPKGG2P0IQWDDKRl-T4sLP8FJ3FuCKE0pIVE7R9M-vg2yD73roWD58G92aQync29tg32HdGttb5MeKNkXHAjQ84jnGQ1knVbbCyPm5cEqPd_kVIN1gtg05eaxxeB6PHEJPYmtBLHYwzeHaOThrZRXPxO6fo4-nxff6cLV8XL_PZMtM5p0OWEw5KKwWCaGpyfg95DYWQTa1AKSKKnHGARgrKQAtegDANT4-anVXyGqboep-bHv0aTRyqlR-DSyernJclECoYTdTNntLBxxhMU62D7WXYVJRUu26rB1jMf7pdJPhqD4eoD9x_9_ANGvh47A</recordid><startdate>20231016</startdate><enddate>20231016</enddate><creator>Liu, Qi</creator><creator>Zhang, Ge</creator><creator>Su, Liqiu</creator><creator>Liu, Pi</creator><creator>Jia, Shiru</creator><creator>Wang, Qinhong</creator><creator>Dai, Zongjie</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-8171-8767</orcidid></search><sort><creationdate>20231016</creationdate><title>Reprogramming the metabolism of oleaginous yeast for sustainably biosynthesizing the anticarcinogen precursor germacrene A</title><author>Liu, Qi ; Zhang, Ge ; Su, Liqiu ; Liu, Pi ; Jia, Shiru ; Wang, Qinhong ; Dai, Zongjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-2083bcbb390c1e28532d349afdb3bb09426833fa9163c98439ef8262e3bcb78d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bioreactors</topic><topic>Biosynthesis</topic><topic>Cell culture</topic><topic>Chemosynthesis</topic><topic>Fermentation</topic><topic>Flasks</topic><topic>Germacrene</topic><topic>Green chemistry</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Metabolic engineering</topic><topic>Metabolism</topic><topic>Mevalonate pathway</topic><topic>Microorganisms</topic><topic>Terpenes</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Zhang, Ge</creatorcontrib><creatorcontrib>Su, Liqiu</creatorcontrib><creatorcontrib>Liu, Pi</creatorcontrib><creatorcontrib>Jia, Shiru</creatorcontrib><creatorcontrib>Wang, Qinhong</creatorcontrib><creatorcontrib>Dai, Zongjie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qi</au><au>Zhang, Ge</au><au>Su, Liqiu</au><au>Liu, Pi</au><au>Jia, Shiru</au><au>Wang, Qinhong</au><au>Dai, Zongjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reprogramming the metabolism of oleaginous yeast for sustainably biosynthesizing the anticarcinogen precursor germacrene A</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2023-10-16</date><risdate>2023</risdate><volume>25</volume><issue>2</issue><spage>7988</spage><epage>7997</epage><pages>7988-7997</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>Due to the diverse structures and broad functions of terpenes, microbial biosynthesis of these compounds has been favored as a sustainable alternative to phytoextraction and chemosynthesis. Here, systematic metabolic engineering strategies were explored in the oleaginous yeast Yarrowia lipolytica for hyperproducing sesquiterpene germacrene A which serves as an important intermediate of numerous anticarcinogens. By identifying the most efficient germacrene A synthase to date, reconstructing the endogenous mevalonate pathway and extending the cytosolic acetyl-CoA pool by regulating lipid metabolism, the resulting strain overproduced 2.794 g L −1 germacrene A in shake flasks, which represented a 38-fold improvement over the initial strain. The engineered strain was subsequently capable of producing 39 g L −1 germacrene A at a yield of 0.181 g g −1 glucose during optimized bioreactor fermentation, with this being the highest sesquiterpene production level reported to date for Y. lipolytica . These results demonstrate that reprogramming the metabolism of the host cell by systematic metabolic engineering plays an essential role in diverting its inherent metabolic fluxes for sesquiterpene biosynthesis and these approaches can be extensively applied for synthesizing natural terpenes. The highest titer of the anticancer precursor sesquiterpene germacrene A was observed in oleaginous yeast using multi-layered systematic metabolic engineering strategies.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3gc01661g</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8171-8767</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9262
ispartof Green chemistry : an international journal and green chemistry resource : GC, 2023-10, Vol.25 (2), p.7988-7997
issn 1463-9262
1463-9270
language eng
recordid cdi_rsc_primary_d3gc01661g
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Bioreactors
Biosynthesis
Cell culture
Chemosynthesis
Fermentation
Flasks
Germacrene
Green chemistry
Lipid metabolism
Lipids
Metabolic engineering
Metabolism
Mevalonate pathway
Microorganisms
Terpenes
Yeast
Yeasts
title Reprogramming the metabolism of oleaginous yeast for sustainably biosynthesizing the anticarcinogen precursor germacrene A
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reprogramming%20the%20metabolism%20of%20oleaginous%20yeast%20for%20sustainably%20biosynthesizing%20the%20anticarcinogen%20precursor%20germacrene%20A&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Liu,%20Qi&rft.date=2023-10-16&rft.volume=25&rft.issue=2&rft.spage=7988&rft.epage=7997&rft.pages=7988-7997&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/d3gc01661g&rft_dat=%3Cproquest_rsc_p%3E2877301961%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-2083bcbb390c1e28532d349afdb3bb09426833fa9163c98439ef8262e3bcb78d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2877301961&rft_id=info:pmid/&rfr_iscdi=true