Loading…

Highly-efficient heterojunction solar cells based on 2D Janus transition-metal nitride halide (TNH) monolayers with ultrahigh carrier mobility

Symmetry breaking has a crucial effect on electronic band structure and subsequently affects the light-absorption coefficient of monolayers. We systematically report a family of two-dimensional (2D) Janus transition-metal nitride halides (TNHs, T = Ti, Zr, Hf, Fe, Pd, Pt, Os, and Re; H = Cl and F) w...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2023-11, Vol.15 (45), p.18328-18336
Main Authors: Xie, Wanying, Pang, Jiafei, Yang, Jinni, Kuang, Xiaoyu, Mao, Aijie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Symmetry breaking has a crucial effect on electronic band structure and subsequently affects the light-absorption coefficient of monolayers. We systematically report a family of two-dimensional (2D) Janus transition-metal nitride halides (TNHs, T = Ti, Zr, Hf, Fe, Pd, Pt, Os, and Re; H = Cl and F) with breaking of both in-plane and out-of-plane structural symmetry. The dynamical, thermal and mechanical stabilities are calculated to check the stability of the Janus TNHs. The electric properties of ten TNHs are studied via the HSE06+SOC method and the band gaps range from 0.93 eV (PdNCl) to 4.74 eV (HfNCl). Desirable light adsorption coefficients of up to 10 5 cm −1 are obtained for the Janus TNHs with no central symmetry. The Janus OsNCl monolayer shows excellent electrical transport properties and ultrahigh carrier mobility (10 4 cm 2 V −1 s −1 ). Heterojunctions formed by stacking two Janus TNH monolayers are further investigated for solar cell applications. Eight of the heterojunctions have type-II band alignments. Surprisingly, the OsNCl/FeNCl heterojunction has a power conversion efficiency (PCE) of 23.45%, which is a larger value compared to the PCE of GeSe/SnSe heterostructures (21.47%). The optical properties and the built-in electric field of the OsNCl/FeNCl heterojunction are investigated. These results indicate that the stable Janus TNH monolayers have potential applications in photoelectric devices, and the vertical heterojunctions can be used in solar cells. We systematically report a family of two-dimensional (2D) Janus transition-metal nitride halides (TNHs, T = Ti, Zr, Hf, Fe, Pd, Pt, Os, and Re; H = Cl and F) with breaking of both in-plane and out-of-plane structural symmetry.
ISSN:2040-3364
2040-3372
DOI:10.1039/d3nr03417h