Loading…
Adsorption of Favipiravir on pristine graphene nanosheets as a drug delivery system: a DFT study
The efficiency of pristine graphene (GN) in the delivery process of the Favipiravir (FPV) anti-COVID-19 drug was herein revealed within the FPV GN complexes in perpendicular and parallel configurations in terms of the density functional theory (DFT) method. Adsorption energy findings unveiled that t...
Saved in:
Published in: | RSC advances 2023-06, Vol.13 (26), p.17465-17475 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The efficiency of pristine graphene (GN) in the delivery process of the Favipiravir (FPV) anti-COVID-19 drug was herein revealed within the FPV GN complexes in perpendicular and parallel configurations in terms of the density functional theory (DFT) method. Adsorption energy findings unveiled that the parallel configuration of FPV GN complexes showed higher desirability than the perpendicular one, giving adsorption energy up to −15.95 kcal mol
−1
. This favorability could be interpreted as a consequence of the contribution of π-π stacking to the overall strength of the adsorption process in the parallel configuration. Frontier molecular orbitals (FMO) findings demonstrated the ability of the GN nanosheet to adsorb the FPV drug by the alteration in the
E
HOMO
,
E
LUMO
, and
E
gap
values before and after the adsorption process. Based on Bader charge results, the FPV drug and GN sheet exhibited electron-donating and -accepting characters, respectively, which was confirmed by the negative sign of the computed charge transfer (
Q
t
) values. The FPV(R) T@GN complex showed the most desirable
Q
t
value of −0.0377
e
, which was in synoptic with the adsorption energy pattern. Electronic properties of GN were also altered after the adsorption of the FPV drug in both configurations, with more observable changes in the parallel one. Interestingly, the Dirac point of the GN sheet coincided with the Fermi level after the adsorption process, indicating that the adsorption process unaffected the presence of the Dirac point. The occurrence of the adsorption process was also noticed by the existence of new bands and peaks in the band structure and DOS plots, respectively. Short recovery time rendered the GN nanosheet an efficient FPV drug delivery system. The obtained findings provide new insight into the biomedical applications of the GN sheet as a promising drug delivery system.
The efficacy of the graphene nanosheet to adsorb Favipiravir drug candidate was investigated at various adsorption sites using DFT methods. |
---|---|
ISSN: | 2046-2069 2046-2069 |
DOI: | 10.1039/d3ra03227b |