Loading…

Challenging breaking thermoelectric performance limits by twistronics

With today's scarce resources, the issue of energy conversion is of great concern. Thermoelectric materials are capable of converting thermal energy to electrical energy. An excellent figure of merit ( ZT ) requires a high power factor and low thermal conductivity. Electron crystal-phonon glass...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-06, Vol.11 (25), p.13519-13526
Main Authors: Song, Jizhe, Sun, Mengtao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c281t-9c7cec33d36905c57880e0201ba614f1b6b3d5604b44910eff457c331570f0603
cites cdi_FETCH-LOGICAL-c281t-9c7cec33d36905c57880e0201ba614f1b6b3d5604b44910eff457c331570f0603
container_end_page 13526
container_issue 25
container_start_page 13519
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Song, Jizhe
Sun, Mengtao
description With today's scarce resources, the issue of energy conversion is of great concern. Thermoelectric materials are capable of converting thermal energy to electrical energy. An excellent figure of merit ( ZT ) requires a high power factor and low thermal conductivity. Electron crystal-phonon glass materials can satisfy both these conditions. When phonon glass transforms into phonon liquid, it is of lower thermal conductivity and thus achieves a higher ZT . In this study, a twisted bilayer borophene (TBB) with a twist angle of 21.79° on a Ag(111) film is investigated. The bilayer borophene without twist angles has been synthesized experimentally [X. Liu, Q. Li, Q. Ruan, M. S. Rahn, B. I. Yakobson and M. C. Hersam, Nat. Mater. , 2022, 21 , 35-40]. The large cell size of 21.79° TBB creates favorable conditions for the short-range disordered phonon liquid state, which leads to a decrease in thermal conductivity and excellent ZT values. By taking advantage of the twist angle superlattice, the larger period leads to increased atomic short-range disorder, which can effectively reduce the thermal conductivity of bilayer borophene resulting in excellent ZT values.
doi_str_mv 10.1039/d3ta02283h
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d3ta02283h</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829692073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-9c7cec33d36905c57880e0201ba614f1b6b3d5604b44910eff457c331570f0603</originalsourceid><addsrcrecordid>eNpF0E1LAzEQBuAgCpbai3dhwZuwOkl2s8mx1GqFgpd6XrJp0qbuR52kSP-9W1fqXOY9PMzAS8gthUcKXD2tedTAmOTbCzJikENaZEpcnrOU12QSwg76kQBCqRGZz7a6rm278e0mqdDqz1OIW4tNZ2trInqT7C26DhvdGpvUvvExJNUxid8-ROxab8INuXK6Dnbyt8fk42W-mi3S5fvr22y6TA2TNKbKFMYaztdcKMhNXkgJFhjQSguaOVqJiq9zAVmVZYqCdS7Li97TvAAHAviY3A9399h9HWyI5a47YNu_LJlkSigGBe_Vw6AMdiGgdeUefaPxWFIoT02Vz3w1_W1q0eO7AWMwZ_ffJP8BAaVkcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829692073</pqid></control><display><type>article</type><title>Challenging breaking thermoelectric performance limits by twistronics</title><source>Royal Society of Chemistry Journals</source><creator>Song, Jizhe ; Sun, Mengtao</creator><creatorcontrib>Song, Jizhe ; Sun, Mengtao</creatorcontrib><description>With today's scarce resources, the issue of energy conversion is of great concern. Thermoelectric materials are capable of converting thermal energy to electrical energy. An excellent figure of merit ( ZT ) requires a high power factor and low thermal conductivity. Electron crystal-phonon glass materials can satisfy both these conditions. When phonon glass transforms into phonon liquid, it is of lower thermal conductivity and thus achieves a higher ZT . In this study, a twisted bilayer borophene (TBB) with a twist angle of 21.79° on a Ag(111) film is investigated. The bilayer borophene without twist angles has been synthesized experimentally [X. Liu, Q. Li, Q. Ruan, M. S. Rahn, B. I. Yakobson and M. C. Hersam, Nat. Mater. , 2022, 21 , 35-40]. The large cell size of 21.79° TBB creates favorable conditions for the short-range disordered phonon liquid state, which leads to a decrease in thermal conductivity and excellent ZT values. By taking advantage of the twist angle superlattice, the larger period leads to increased atomic short-range disorder, which can effectively reduce the thermal conductivity of bilayer borophene resulting in excellent ZT values.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta02283h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bilayers ; Borophene ; Cell size ; Energy conversion ; Figure of merit ; Heat transfer ; Phonons ; Power factor ; Silver ; Thermal conductivity ; Thermal energy ; Thermoelectric materials</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-06, Vol.11 (25), p.13519-13526</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-9c7cec33d36905c57880e0201ba614f1b6b3d5604b44910eff457c331570f0603</citedby><cites>FETCH-LOGICAL-c281t-9c7cec33d36905c57880e0201ba614f1b6b3d5604b44910eff457c331570f0603</cites><orcidid>0000-0002-8153-2679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Song, Jizhe</creatorcontrib><creatorcontrib>Sun, Mengtao</creatorcontrib><title>Challenging breaking thermoelectric performance limits by twistronics</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>With today's scarce resources, the issue of energy conversion is of great concern. Thermoelectric materials are capable of converting thermal energy to electrical energy. An excellent figure of merit ( ZT ) requires a high power factor and low thermal conductivity. Electron crystal-phonon glass materials can satisfy both these conditions. When phonon glass transforms into phonon liquid, it is of lower thermal conductivity and thus achieves a higher ZT . In this study, a twisted bilayer borophene (TBB) with a twist angle of 21.79° on a Ag(111) film is investigated. The bilayer borophene without twist angles has been synthesized experimentally [X. Liu, Q. Li, Q. Ruan, M. S. Rahn, B. I. Yakobson and M. C. Hersam, Nat. Mater. , 2022, 21 , 35-40]. The large cell size of 21.79° TBB creates favorable conditions for the short-range disordered phonon liquid state, which leads to a decrease in thermal conductivity and excellent ZT values. By taking advantage of the twist angle superlattice, the larger period leads to increased atomic short-range disorder, which can effectively reduce the thermal conductivity of bilayer borophene resulting in excellent ZT values.</description><subject>Bilayers</subject><subject>Borophene</subject><subject>Cell size</subject><subject>Energy conversion</subject><subject>Figure of merit</subject><subject>Heat transfer</subject><subject>Phonons</subject><subject>Power factor</subject><subject>Silver</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>Thermoelectric materials</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LAzEQBuAgCpbai3dhwZuwOkl2s8mx1GqFgpd6XrJp0qbuR52kSP-9W1fqXOY9PMzAS8gthUcKXD2tedTAmOTbCzJikENaZEpcnrOU12QSwg76kQBCqRGZz7a6rm278e0mqdDqz1OIW4tNZ2trInqT7C26DhvdGpvUvvExJNUxid8-ROxab8INuXK6Dnbyt8fk42W-mi3S5fvr22y6TA2TNKbKFMYaztdcKMhNXkgJFhjQSguaOVqJiq9zAVmVZYqCdS7Li97TvAAHAviY3A9399h9HWyI5a47YNu_LJlkSigGBe_Vw6AMdiGgdeUefaPxWFIoT02Vz3w1_W1q0eO7AWMwZ_ffJP8BAaVkcw</recordid><startdate>20230627</startdate><enddate>20230627</enddate><creator>Song, Jizhe</creator><creator>Sun, Mengtao</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8153-2679</orcidid></search><sort><creationdate>20230627</creationdate><title>Challenging breaking thermoelectric performance limits by twistronics</title><author>Song, Jizhe ; Sun, Mengtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-9c7cec33d36905c57880e0201ba614f1b6b3d5604b44910eff457c331570f0603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bilayers</topic><topic>Borophene</topic><topic>Cell size</topic><topic>Energy conversion</topic><topic>Figure of merit</topic><topic>Heat transfer</topic><topic>Phonons</topic><topic>Power factor</topic><topic>Silver</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>Thermoelectric materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Jizhe</creatorcontrib><creatorcontrib>Sun, Mengtao</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Jizhe</au><au>Sun, Mengtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Challenging breaking thermoelectric performance limits by twistronics</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-06-27</date><risdate>2023</risdate><volume>11</volume><issue>25</issue><spage>13519</spage><epage>13526</epage><pages>13519-13526</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>With today's scarce resources, the issue of energy conversion is of great concern. Thermoelectric materials are capable of converting thermal energy to electrical energy. An excellent figure of merit ( ZT ) requires a high power factor and low thermal conductivity. Electron crystal-phonon glass materials can satisfy both these conditions. When phonon glass transforms into phonon liquid, it is of lower thermal conductivity and thus achieves a higher ZT . In this study, a twisted bilayer borophene (TBB) with a twist angle of 21.79° on a Ag(111) film is investigated. The bilayer borophene without twist angles has been synthesized experimentally [X. Liu, Q. Li, Q. Ruan, M. S. Rahn, B. I. Yakobson and M. C. Hersam, Nat. Mater. , 2022, 21 , 35-40]. The large cell size of 21.79° TBB creates favorable conditions for the short-range disordered phonon liquid state, which leads to a decrease in thermal conductivity and excellent ZT values. By taking advantage of the twist angle superlattice, the larger period leads to increased atomic short-range disorder, which can effectively reduce the thermal conductivity of bilayer borophene resulting in excellent ZT values.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta02283h</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8153-2679</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-06, Vol.11 (25), p.13519-13526
issn 2050-7488
2050-7496
language eng
recordid cdi_rsc_primary_d3ta02283h
source Royal Society of Chemistry Journals
subjects Bilayers
Borophene
Cell size
Energy conversion
Figure of merit
Heat transfer
Phonons
Power factor
Silver
Thermal conductivity
Thermal energy
Thermoelectric materials
title Challenging breaking thermoelectric performance limits by twistronics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Challenging%20breaking%20thermoelectric%20performance%20limits%20by%20twistronics&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Song,%20Jizhe&rft.date=2023-06-27&rft.volume=11&rft.issue=25&rft.spage=13519&rft.epage=13526&rft.pages=13519-13526&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta02283h&rft_dat=%3Cproquest_rsc_p%3E2829692073%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-9c7cec33d36905c57880e0201ba614f1b6b3d5604b44910eff457c331570f0603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2829692073&rft_id=info:pmid/&rfr_iscdi=true