Loading…
Challenging breaking thermoelectric performance limits by twistronics
With today's scarce resources, the issue of energy conversion is of great concern. Thermoelectric materials are capable of converting thermal energy to electrical energy. An excellent figure of merit ( ZT ) requires a high power factor and low thermal conductivity. Electron crystal-phonon glass...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-06, Vol.11 (25), p.13519-13526 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c281t-9c7cec33d36905c57880e0201ba614f1b6b3d5604b44910eff457c331570f0603 |
---|---|
cites | cdi_FETCH-LOGICAL-c281t-9c7cec33d36905c57880e0201ba614f1b6b3d5604b44910eff457c331570f0603 |
container_end_page | 13526 |
container_issue | 25 |
container_start_page | 13519 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 11 |
creator | Song, Jizhe Sun, Mengtao |
description | With today's scarce resources, the issue of energy conversion is of great concern. Thermoelectric materials are capable of converting thermal energy to electrical energy. An excellent figure of merit (
ZT
) requires a high power factor and low thermal conductivity. Electron crystal-phonon glass materials can satisfy both these conditions. When phonon glass transforms into phonon liquid, it is of lower thermal conductivity and thus achieves a higher
ZT
. In this study, a twisted bilayer borophene (TBB) with a twist angle of 21.79° on a Ag(111) film is investigated. The bilayer borophene without twist angles has been synthesized experimentally [X. Liu, Q. Li, Q. Ruan, M. S. Rahn, B. I. Yakobson and M. C. Hersam,
Nat. Mater.
, 2022,
21
, 35-40]. The large cell size of 21.79° TBB creates favorable conditions for the short-range disordered phonon liquid state, which leads to a decrease in thermal conductivity and excellent
ZT
values.
By taking advantage of the twist angle superlattice, the larger period leads to increased atomic short-range disorder, which can effectively reduce the thermal conductivity of bilayer borophene resulting in excellent
ZT
values. |
doi_str_mv | 10.1039/d3ta02283h |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d3ta02283h</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829692073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-9c7cec33d36905c57880e0201ba614f1b6b3d5604b44910eff457c331570f0603</originalsourceid><addsrcrecordid>eNpF0E1LAzEQBuAgCpbai3dhwZuwOkl2s8mx1GqFgpd6XrJp0qbuR52kSP-9W1fqXOY9PMzAS8gthUcKXD2tedTAmOTbCzJikENaZEpcnrOU12QSwg76kQBCqRGZz7a6rm278e0mqdDqz1OIW4tNZ2trInqT7C26DhvdGpvUvvExJNUxid8-ROxab8INuXK6Dnbyt8fk42W-mi3S5fvr22y6TA2TNKbKFMYaztdcKMhNXkgJFhjQSguaOVqJiq9zAVmVZYqCdS7Li97TvAAHAviY3A9399h9HWyI5a47YNu_LJlkSigGBe_Vw6AMdiGgdeUefaPxWFIoT02Vz3w1_W1q0eO7AWMwZ_ffJP8BAaVkcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829692073</pqid></control><display><type>article</type><title>Challenging breaking thermoelectric performance limits by twistronics</title><source>Royal Society of Chemistry Journals</source><creator>Song, Jizhe ; Sun, Mengtao</creator><creatorcontrib>Song, Jizhe ; Sun, Mengtao</creatorcontrib><description>With today's scarce resources, the issue of energy conversion is of great concern. Thermoelectric materials are capable of converting thermal energy to electrical energy. An excellent figure of merit (
ZT
) requires a high power factor and low thermal conductivity. Electron crystal-phonon glass materials can satisfy both these conditions. When phonon glass transforms into phonon liquid, it is of lower thermal conductivity and thus achieves a higher
ZT
. In this study, a twisted bilayer borophene (TBB) with a twist angle of 21.79° on a Ag(111) film is investigated. The bilayer borophene without twist angles has been synthesized experimentally [X. Liu, Q. Li, Q. Ruan, M. S. Rahn, B. I. Yakobson and M. C. Hersam,
Nat. Mater.
, 2022,
21
, 35-40]. The large cell size of 21.79° TBB creates favorable conditions for the short-range disordered phonon liquid state, which leads to a decrease in thermal conductivity and excellent
ZT
values.
By taking advantage of the twist angle superlattice, the larger period leads to increased atomic short-range disorder, which can effectively reduce the thermal conductivity of bilayer borophene resulting in excellent
ZT
values.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta02283h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bilayers ; Borophene ; Cell size ; Energy conversion ; Figure of merit ; Heat transfer ; Phonons ; Power factor ; Silver ; Thermal conductivity ; Thermal energy ; Thermoelectric materials</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-06, Vol.11 (25), p.13519-13526</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-9c7cec33d36905c57880e0201ba614f1b6b3d5604b44910eff457c331570f0603</citedby><cites>FETCH-LOGICAL-c281t-9c7cec33d36905c57880e0201ba614f1b6b3d5604b44910eff457c331570f0603</cites><orcidid>0000-0002-8153-2679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Song, Jizhe</creatorcontrib><creatorcontrib>Sun, Mengtao</creatorcontrib><title>Challenging breaking thermoelectric performance limits by twistronics</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>With today's scarce resources, the issue of energy conversion is of great concern. Thermoelectric materials are capable of converting thermal energy to electrical energy. An excellent figure of merit (
ZT
) requires a high power factor and low thermal conductivity. Electron crystal-phonon glass materials can satisfy both these conditions. When phonon glass transforms into phonon liquid, it is of lower thermal conductivity and thus achieves a higher
ZT
. In this study, a twisted bilayer borophene (TBB) with a twist angle of 21.79° on a Ag(111) film is investigated. The bilayer borophene without twist angles has been synthesized experimentally [X. Liu, Q. Li, Q. Ruan, M. S. Rahn, B. I. Yakobson and M. C. Hersam,
Nat. Mater.
, 2022,
21
, 35-40]. The large cell size of 21.79° TBB creates favorable conditions for the short-range disordered phonon liquid state, which leads to a decrease in thermal conductivity and excellent
ZT
values.
By taking advantage of the twist angle superlattice, the larger period leads to increased atomic short-range disorder, which can effectively reduce the thermal conductivity of bilayer borophene resulting in excellent
ZT
values.</description><subject>Bilayers</subject><subject>Borophene</subject><subject>Cell size</subject><subject>Energy conversion</subject><subject>Figure of merit</subject><subject>Heat transfer</subject><subject>Phonons</subject><subject>Power factor</subject><subject>Silver</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>Thermoelectric materials</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LAzEQBuAgCpbai3dhwZuwOkl2s8mx1GqFgpd6XrJp0qbuR52kSP-9W1fqXOY9PMzAS8gthUcKXD2tedTAmOTbCzJikENaZEpcnrOU12QSwg76kQBCqRGZz7a6rm278e0mqdDqz1OIW4tNZ2trInqT7C26DhvdGpvUvvExJNUxid8-ROxab8INuXK6Dnbyt8fk42W-mi3S5fvr22y6TA2TNKbKFMYaztdcKMhNXkgJFhjQSguaOVqJiq9zAVmVZYqCdS7Li97TvAAHAviY3A9399h9HWyI5a47YNu_LJlkSigGBe_Vw6AMdiGgdeUefaPxWFIoT02Vz3w1_W1q0eO7AWMwZ_ffJP8BAaVkcw</recordid><startdate>20230627</startdate><enddate>20230627</enddate><creator>Song, Jizhe</creator><creator>Sun, Mengtao</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8153-2679</orcidid></search><sort><creationdate>20230627</creationdate><title>Challenging breaking thermoelectric performance limits by twistronics</title><author>Song, Jizhe ; Sun, Mengtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-9c7cec33d36905c57880e0201ba614f1b6b3d5604b44910eff457c331570f0603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bilayers</topic><topic>Borophene</topic><topic>Cell size</topic><topic>Energy conversion</topic><topic>Figure of merit</topic><topic>Heat transfer</topic><topic>Phonons</topic><topic>Power factor</topic><topic>Silver</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>Thermoelectric materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Jizhe</creatorcontrib><creatorcontrib>Sun, Mengtao</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Jizhe</au><au>Sun, Mengtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Challenging breaking thermoelectric performance limits by twistronics</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-06-27</date><risdate>2023</risdate><volume>11</volume><issue>25</issue><spage>13519</spage><epage>13526</epage><pages>13519-13526</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>With today's scarce resources, the issue of energy conversion is of great concern. Thermoelectric materials are capable of converting thermal energy to electrical energy. An excellent figure of merit (
ZT
) requires a high power factor and low thermal conductivity. Electron crystal-phonon glass materials can satisfy both these conditions. When phonon glass transforms into phonon liquid, it is of lower thermal conductivity and thus achieves a higher
ZT
. In this study, a twisted bilayer borophene (TBB) with a twist angle of 21.79° on a Ag(111) film is investigated. The bilayer borophene without twist angles has been synthesized experimentally [X. Liu, Q. Li, Q. Ruan, M. S. Rahn, B. I. Yakobson and M. C. Hersam,
Nat. Mater.
, 2022,
21
, 35-40]. The large cell size of 21.79° TBB creates favorable conditions for the short-range disordered phonon liquid state, which leads to a decrease in thermal conductivity and excellent
ZT
values.
By taking advantage of the twist angle superlattice, the larger period leads to increased atomic short-range disorder, which can effectively reduce the thermal conductivity of bilayer borophene resulting in excellent
ZT
values.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta02283h</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8153-2679</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2023-06, Vol.11 (25), p.13519-13526 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_rsc_primary_d3ta02283h |
source | Royal Society of Chemistry Journals |
subjects | Bilayers Borophene Cell size Energy conversion Figure of merit Heat transfer Phonons Power factor Silver Thermal conductivity Thermal energy Thermoelectric materials |
title | Challenging breaking thermoelectric performance limits by twistronics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Challenging%20breaking%20thermoelectric%20performance%20limits%20by%20twistronics&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Song,%20Jizhe&rft.date=2023-06-27&rft.volume=11&rft.issue=25&rft.spage=13519&rft.epage=13526&rft.pages=13519-13526&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta02283h&rft_dat=%3Cproquest_rsc_p%3E2829692073%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-9c7cec33d36905c57880e0201ba614f1b6b3d5604b44910eff457c331570f0603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2829692073&rft_id=info:pmid/&rfr_iscdi=true |