Loading…

Value-added methanol electroreforming coupled with green hydrogen production at the edge interface of 2D boron nanosheets

Electrocatalytic water splitting has been regarded as a promising technology for the production of ultrapure hydrogen (H 2 ) in this decade. Nonetheless, the efficiency of the water splitting is severely hampered by the sluggish anodic oxygen evolution reaction (OER). The coupling of thermodynamical...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-10, Vol.11 (38), p.2712-2723
Main Authors: Sathyaseelan, Arunprasath, Krishnamoorthy, Karthikeyan, Pazhamalai, Parthiban, Liyakath Ali, Noor Ul Haq, Kim, Sang-Jae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c281t-29229de905d265fa9026fc2c2ad78954d9aad69550c5d5c5ea4430ca9a52fb073
cites cdi_FETCH-LOGICAL-c281t-29229de905d265fa9026fc2c2ad78954d9aad69550c5d5c5ea4430ca9a52fb073
container_end_page 2723
container_issue 38
container_start_page 2712
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Sathyaseelan, Arunprasath
Krishnamoorthy, Karthikeyan
Pazhamalai, Parthiban
Liyakath Ali, Noor Ul Haq
Kim, Sang-Jae
description Electrocatalytic water splitting has been regarded as a promising technology for the production of ultrapure hydrogen (H 2 ) in this decade. Nonetheless, the efficiency of the water splitting is severely hampered by the sluggish anodic oxygen evolution reaction (OER). The coupling of thermodynamically favourable anodic oxidation reactions (small molecule oxidations) is an innovative strategy to overcome these critical challenges in conventional technology. Herein, we demonstrate the use of liquid phase exfoliated 2D boron nanosheets (eBNSs) as an efficient non-noble electrocatalyst for a traditional/hybrid water electrolyzer. The physico-chemical studies revealed that the exfoliation of boron sheets leads to a decrease in lateral size, layer numbers and an increase in surface area without affecting their crystallinity. Benefitting from the increased surface and edge interfaces, the eBNSs showed enhanced electrocatalytic activity towards the hydrogen evolution reaction (HER) (146 mV), OER (291 mV) and methanol oxidation reaction (MOR) (190 mV) to meet 10 mA cm −2 which is better than that of bulk boron. The eBNS/NF-4 hybrid electrolyzer (HER + MOR) requires 1.55 V (@10 mA cm −2 ) to electrosynthesis value added formate and hydrogen with a 160 mV lower voltage compared to a conventional electrolyzer (HER + OER). Furthermore, the real time hybrid water electrolyzer (in a H-type cell) delivers superior H 2 production with 93% faradaic efficiency. Overall, this work demonstrates the use of non-noble 2D eBNSs as a potential candidate for next generation energy-efficient green H 2 production systems. Electrolytic co-production of value-added formate and hydrogen over 2D boron nanosheets.
doi_str_mv 10.1039/d3ta03513a
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d3ta03513a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872070774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-29229de905d265fa9026fc2c2ad78954d9aad69550c5d5c5ea4430ca9a52fb073</originalsourceid><addsrcrecordid>eNpFkM1LAzEQxYMoWGov3oWAN2F1Ntnsbo6l9QsKXqrXJU1mP8p2U5Ms0v_eaKXOZd7hx5t5j5DrFO5T4PLB8KCAi5SrMzJhICApMpmfn3RZXpKZ91uIUwLkUk7I4UP1IybKGDR0h6FVg-0p9qiDsw5r63bd0FBtx30fia8utLRxiANtD8bZJoq9s2bUobMDVYGGFimaBmk3BHS10khtTdmSbqyLxBD9fYsY_BW5qFXvcfa3p-T96XG9eElWb8-vi_kq0axMQ8IkY9KgBGFYLmolgeW1ZpopU5RSZEYqZXIpBGhhhBaosoyDVlIJVm-g4FNye_SNf36O6EO1taMb4smKlQWDAooii9TdkdLOeh-DV3vX7ZQ7VClUP-1WS76e_7Y7j_DNEXZen7j_9vk3JG139A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872070774</pqid></control><display><type>article</type><title>Value-added methanol electroreforming coupled with green hydrogen production at the edge interface of 2D boron nanosheets</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Sathyaseelan, Arunprasath ; Krishnamoorthy, Karthikeyan ; Pazhamalai, Parthiban ; Liyakath Ali, Noor Ul Haq ; Kim, Sang-Jae</creator><creatorcontrib>Sathyaseelan, Arunprasath ; Krishnamoorthy, Karthikeyan ; Pazhamalai, Parthiban ; Liyakath Ali, Noor Ul Haq ; Kim, Sang-Jae</creatorcontrib><description>Electrocatalytic water splitting has been regarded as a promising technology for the production of ultrapure hydrogen (H 2 ) in this decade. Nonetheless, the efficiency of the water splitting is severely hampered by the sluggish anodic oxygen evolution reaction (OER). The coupling of thermodynamically favourable anodic oxidation reactions (small molecule oxidations) is an innovative strategy to overcome these critical challenges in conventional technology. Herein, we demonstrate the use of liquid phase exfoliated 2D boron nanosheets (eBNSs) as an efficient non-noble electrocatalyst for a traditional/hybrid water electrolyzer. The physico-chemical studies revealed that the exfoliation of boron sheets leads to a decrease in lateral size, layer numbers and an increase in surface area without affecting their crystallinity. Benefitting from the increased surface and edge interfaces, the eBNSs showed enhanced electrocatalytic activity towards the hydrogen evolution reaction (HER) (146 mV), OER (291 mV) and methanol oxidation reaction (MOR) (190 mV) to meet 10 mA cm −2 which is better than that of bulk boron. The eBNS/NF-4 hybrid electrolyzer (HER + MOR) requires 1.55 V (@10 mA cm −2 ) to electrosynthesis value added formate and hydrogen with a 160 mV lower voltage compared to a conventional electrolyzer (HER + OER). Furthermore, the real time hybrid water electrolyzer (in a H-type cell) delivers superior H 2 production with 93% faradaic efficiency. Overall, this work demonstrates the use of non-noble 2D eBNSs as a potential candidate for next generation energy-efficient green H 2 production systems. Electrolytic co-production of value-added formate and hydrogen over 2D boron nanosheets.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta03513a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodizing ; Boron ; Borophene ; Clean energy ; Electrocatalysts ; Energy efficiency ; Exfoliation ; Green hydrogen ; Hydrogen ; Hydrogen evolution reactions ; Hydrogen production ; Liquid phases ; Methanol ; Nanosheets ; Oxidation ; Oxygen evolution reactions ; Technology ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-10, Vol.11 (38), p.2712-2723</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-29229de905d265fa9026fc2c2ad78954d9aad69550c5d5c5ea4430ca9a52fb073</citedby><cites>FETCH-LOGICAL-c281t-29229de905d265fa9026fc2c2ad78954d9aad69550c5d5c5ea4430ca9a52fb073</cites><orcidid>0000-0002-8615-8516 ; 0000-0003-0460-5763 ; 0000-0003-0966-0534 ; 0000-0002-8519-3010 ; 0000-0002-5066-2622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sathyaseelan, Arunprasath</creatorcontrib><creatorcontrib>Krishnamoorthy, Karthikeyan</creatorcontrib><creatorcontrib>Pazhamalai, Parthiban</creatorcontrib><creatorcontrib>Liyakath Ali, Noor Ul Haq</creatorcontrib><creatorcontrib>Kim, Sang-Jae</creatorcontrib><title>Value-added methanol electroreforming coupled with green hydrogen production at the edge interface of 2D boron nanosheets</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Electrocatalytic water splitting has been regarded as a promising technology for the production of ultrapure hydrogen (H 2 ) in this decade. Nonetheless, the efficiency of the water splitting is severely hampered by the sluggish anodic oxygen evolution reaction (OER). The coupling of thermodynamically favourable anodic oxidation reactions (small molecule oxidations) is an innovative strategy to overcome these critical challenges in conventional technology. Herein, we demonstrate the use of liquid phase exfoliated 2D boron nanosheets (eBNSs) as an efficient non-noble electrocatalyst for a traditional/hybrid water electrolyzer. The physico-chemical studies revealed that the exfoliation of boron sheets leads to a decrease in lateral size, layer numbers and an increase in surface area without affecting their crystallinity. Benefitting from the increased surface and edge interfaces, the eBNSs showed enhanced electrocatalytic activity towards the hydrogen evolution reaction (HER) (146 mV), OER (291 mV) and methanol oxidation reaction (MOR) (190 mV) to meet 10 mA cm −2 which is better than that of bulk boron. The eBNS/NF-4 hybrid electrolyzer (HER + MOR) requires 1.55 V (@10 mA cm −2 ) to electrosynthesis value added formate and hydrogen with a 160 mV lower voltage compared to a conventional electrolyzer (HER + OER). Furthermore, the real time hybrid water electrolyzer (in a H-type cell) delivers superior H 2 production with 93% faradaic efficiency. Overall, this work demonstrates the use of non-noble 2D eBNSs as a potential candidate for next generation energy-efficient green H 2 production systems. Electrolytic co-production of value-added formate and hydrogen over 2D boron nanosheets.</description><subject>Anodizing</subject><subject>Boron</subject><subject>Borophene</subject><subject>Clean energy</subject><subject>Electrocatalysts</subject><subject>Energy efficiency</subject><subject>Exfoliation</subject><subject>Green hydrogen</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Liquid phases</subject><subject>Methanol</subject><subject>Nanosheets</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Technology</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEQxYMoWGov3oWAN2F1Ntnsbo6l9QsKXqrXJU1mP8p2U5Ms0v_eaKXOZd7hx5t5j5DrFO5T4PLB8KCAi5SrMzJhICApMpmfn3RZXpKZ91uIUwLkUk7I4UP1IybKGDR0h6FVg-0p9qiDsw5r63bd0FBtx30fia8utLRxiANtD8bZJoq9s2bUobMDVYGGFimaBmk3BHS10khtTdmSbqyLxBD9fYsY_BW5qFXvcfa3p-T96XG9eElWb8-vi_kq0axMQ8IkY9KgBGFYLmolgeW1ZpopU5RSZEYqZXIpBGhhhBaosoyDVlIJVm-g4FNye_SNf36O6EO1taMb4smKlQWDAooii9TdkdLOeh-DV3vX7ZQ7VClUP-1WS76e_7Y7j_DNEXZen7j_9vk3JG139A</recordid><startdate>20231004</startdate><enddate>20231004</enddate><creator>Sathyaseelan, Arunprasath</creator><creator>Krishnamoorthy, Karthikeyan</creator><creator>Pazhamalai, Parthiban</creator><creator>Liyakath Ali, Noor Ul Haq</creator><creator>Kim, Sang-Jae</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8615-8516</orcidid><orcidid>https://orcid.org/0000-0003-0460-5763</orcidid><orcidid>https://orcid.org/0000-0003-0966-0534</orcidid><orcidid>https://orcid.org/0000-0002-8519-3010</orcidid><orcidid>https://orcid.org/0000-0002-5066-2622</orcidid></search><sort><creationdate>20231004</creationdate><title>Value-added methanol electroreforming coupled with green hydrogen production at the edge interface of 2D boron nanosheets</title><author>Sathyaseelan, Arunprasath ; Krishnamoorthy, Karthikeyan ; Pazhamalai, Parthiban ; Liyakath Ali, Noor Ul Haq ; Kim, Sang-Jae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-29229de905d265fa9026fc2c2ad78954d9aad69550c5d5c5ea4430ca9a52fb073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodizing</topic><topic>Boron</topic><topic>Borophene</topic><topic>Clean energy</topic><topic>Electrocatalysts</topic><topic>Energy efficiency</topic><topic>Exfoliation</topic><topic>Green hydrogen</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Liquid phases</topic><topic>Methanol</topic><topic>Nanosheets</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Technology</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sathyaseelan, Arunprasath</creatorcontrib><creatorcontrib>Krishnamoorthy, Karthikeyan</creatorcontrib><creatorcontrib>Pazhamalai, Parthiban</creatorcontrib><creatorcontrib>Liyakath Ali, Noor Ul Haq</creatorcontrib><creatorcontrib>Kim, Sang-Jae</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sathyaseelan, Arunprasath</au><au>Krishnamoorthy, Karthikeyan</au><au>Pazhamalai, Parthiban</au><au>Liyakath Ali, Noor Ul Haq</au><au>Kim, Sang-Jae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Value-added methanol electroreforming coupled with green hydrogen production at the edge interface of 2D boron nanosheets</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-10-04</date><risdate>2023</risdate><volume>11</volume><issue>38</issue><spage>2712</spage><epage>2723</epage><pages>2712-2723</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Electrocatalytic water splitting has been regarded as a promising technology for the production of ultrapure hydrogen (H 2 ) in this decade. Nonetheless, the efficiency of the water splitting is severely hampered by the sluggish anodic oxygen evolution reaction (OER). The coupling of thermodynamically favourable anodic oxidation reactions (small molecule oxidations) is an innovative strategy to overcome these critical challenges in conventional technology. Herein, we demonstrate the use of liquid phase exfoliated 2D boron nanosheets (eBNSs) as an efficient non-noble electrocatalyst for a traditional/hybrid water electrolyzer. The physico-chemical studies revealed that the exfoliation of boron sheets leads to a decrease in lateral size, layer numbers and an increase in surface area without affecting their crystallinity. Benefitting from the increased surface and edge interfaces, the eBNSs showed enhanced electrocatalytic activity towards the hydrogen evolution reaction (HER) (146 mV), OER (291 mV) and methanol oxidation reaction (MOR) (190 mV) to meet 10 mA cm −2 which is better than that of bulk boron. The eBNS/NF-4 hybrid electrolyzer (HER + MOR) requires 1.55 V (@10 mA cm −2 ) to electrosynthesis value added formate and hydrogen with a 160 mV lower voltage compared to a conventional electrolyzer (HER + OER). Furthermore, the real time hybrid water electrolyzer (in a H-type cell) delivers superior H 2 production with 93% faradaic efficiency. Overall, this work demonstrates the use of non-noble 2D eBNSs as a potential candidate for next generation energy-efficient green H 2 production systems. Electrolytic co-production of value-added formate and hydrogen over 2D boron nanosheets.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta03513a</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8615-8516</orcidid><orcidid>https://orcid.org/0000-0003-0460-5763</orcidid><orcidid>https://orcid.org/0000-0003-0966-0534</orcidid><orcidid>https://orcid.org/0000-0002-8519-3010</orcidid><orcidid>https://orcid.org/0000-0002-5066-2622</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-10, Vol.11 (38), p.2712-2723
issn 2050-7488
2050-7496
language eng
recordid cdi_rsc_primary_d3ta03513a
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Anodizing
Boron
Borophene
Clean energy
Electrocatalysts
Energy efficiency
Exfoliation
Green hydrogen
Hydrogen
Hydrogen evolution reactions
Hydrogen production
Liquid phases
Methanol
Nanosheets
Oxidation
Oxygen evolution reactions
Technology
Water splitting
title Value-added methanol electroreforming coupled with green hydrogen production at the edge interface of 2D boron nanosheets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Value-added%20methanol%20electroreforming%20coupled%20with%20green%20hydrogen%20production%20at%20the%20edge%20interface%20of%202D%20boron%20nanosheets&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Sathyaseelan,%20Arunprasath&rft.date=2023-10-04&rft.volume=11&rft.issue=38&rft.spage=2712&rft.epage=2723&rft.pages=2712-2723&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta03513a&rft_dat=%3Cproquest_rsc_p%3E2872070774%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-29229de905d265fa9026fc2c2ad78954d9aad69550c5d5c5ea4430ca9a52fb073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2872070774&rft_id=info:pmid/&rfr_iscdi=true