Loading…

Development of bioactive short fiber-reinforced printable hydrogels with tunable mechanical and osteogenic properties for bone repair

Personalized bone-regenerative materials have attracted substantial interest in recent years. Modern clinical settings demand the use of engineered materials incorporating patient-derived cells, cytokines, antibodies, and biomarkers to enhance the process of regeneration. In this work, we formulated...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2024-03, Vol.12 (11), p.2818-283
Main Authors: Moghimi, Nafiseh, Kamaraj, Meenakshi, Zehtabi, Fatemeh, Amin Yavari, Saber, Kohandel, Mohammad, Khademhosseini, Ali, John, Johnson V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Personalized bone-regenerative materials have attracted substantial interest in recent years. Modern clinical settings demand the use of engineered materials incorporating patient-derived cells, cytokines, antibodies, and biomarkers to enhance the process of regeneration. In this work, we formulated short microfiber-reinforced hydrogels with platelet-rich fibrin (PRF) to engineer implantable multi-material core-shell bone grafts. By employing 3D bioprinting technology, we fabricated a core-shell bone graft from a hybrid composite hydroxyapatite-coated poly(lactic acid) (PLA) fiber-reinforced methacryolyl gelatin (GelMA)/alginate hydrogel. The overall concept involves 3D bioprinting of long bone mimic microstructures that resemble a core-shell cancellous-cortical structure, with a stiffer shell and a softer core with our engineered biomaterial. We observed a significantly enhanced stiffness in the hydrogel scaffold incorporated with hydroxyapatite (HA)-coated PLA microfibers compared to the pristine hydrogel construct. Furthermore, HA non-coated PLA microfibers were mixed with PRF and GelMA/alginate hydrogel to introduce a slow release of growth factors which can further enhance cell maturation and differentiation. These patient-specific bone grafts deliver cytokines and growth factors with distinct spatiotemporal release profiles to enhance tissue regeneration. The biocompatible and bio-responsive bone mimetic core-shell multi-material structures enhance osteogenesis and can be customized to have materials at a specific location, geometry, and material combination. Personalized bone-regenerative materials with enhanced mechanical and osteogenic properties.
ISSN:2050-750X
2050-7518
DOI:10.1039/d3tb02924g