Loading…
Modulation of hyperthermic and relaxometric responses of magnetic iron oxide nanoparticles through ligand exchange provides design criteria for dual-functionality
Magnetic iron oxide nanoparticles (MNPs) are the subject of intense study as theranostic tools that combine magnetic resonance imaging (MRI)-trackability with AC-field responsive heating. In this study, we report MNPs synthesised using a modification of an established thermal decomposition method wh...
Saved in:
Published in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2023-05, Vol.11 (19), p.6417-6428 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c276t-e6f9c25dfa0c4a4a597310aabef7521660d95e9320e3db774e9d65502fcef6953 |
container_end_page | 6428 |
container_issue | 19 |
container_start_page | 6417 |
container_title | Journal of materials chemistry. C, Materials for optical and electronic devices |
container_volume | 11 |
creator | Aluri, Esther Rani Shingte, Sameer D McKiernan, Eoin P Ferguson, Steven Brougham, Dermot F |
description | Magnetic iron oxide nanoparticles (MNPs) are the subject of intense study as theranostic tools that combine magnetic resonance imaging (MRI)-trackability with AC-field responsive heating. In this study, we report MNPs synthesised using a modification of an established thermal decomposition method which, following extensive parameter optimisation, provides strong hyperthermic heating efficacy that is reproducible batch to batch. The suspensions have an exceptional specific absorption rate of ∼2800 W g
−1
(intrinsic loss power, ILP ∼20.4 W m
2
g
−1
kA
−2
kHz
−1
) within a high concentration range (collective particle scenario) falling to ∼1000 W g
−1
(∼7.9 W m
2
g
−1
kA
−2
kHz
−1
) on full dispersion by dilution. The effect of stabilising ligand surface chemistry on the concentration-dependent hyperthermic and MRI efficacies was evaluated by ligand exchange/phase transfer from organic to aqueous and back to organic suspension, and on the formation of organogels. Fast field-cycling NMR relaxometry of the different suspensions reveals the role of moment dynamics and of subtle differences in particle and solvent diffusion in determining both the hyperthermic and relaxometric efficacies. These insights identify particle design compromises that are required to simultaneously optimise MNPs for the two applications.
Changes in hyperthermic and MRI efficacies of magnetic nanoparticle suspensions following ligand exchange/phase transfer and in the gel phase reveals how the responses are determined by moment dynamics and particle and solvent diffusion. |
doi_str_mv | 10.1039/d3tc00489a |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d3tc00489a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814723568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-e6f9c25dfa0c4a4a597310aabef7521660d95e9320e3db774e9d65502fcef6953</originalsourceid><addsrcrecordid>eNpFkUFr3DAQhU1ooCHJpfeCoLeCG9myZOsYtk1bSOklPZuJPLIVvJI7ksvu3-kvjZwt6YAY8fj0eOIVxbuKf6q40DeDSIbzptNwVlzUXPKylaJ583qv1dviOsYnnqerVKf0RfH3RxjWGZILngXLpuOClCakvTMM_MAIZziEPSbKAmFcgo8YN3QPo8eUVUfb24MbkHnwYQHK6pyhNFFYx4nNbtys8GAm8COyhcKfTEeWjxs9M-QSkgNmA7Fhhbm0qzdbJJhdOl4V5xbmiNf_9mXx6-7Lw-5bef_z6_fd7X1p6lalEpXVppaDBW4aaEDqVlQc4BFt_nqlFB-0RC1qjmJ4bNsG9aCk5LU1aJWW4rL4cPLN-X6vGFP_FFbKGWJfd1XT1kKqLlMfT5ShECOh7Rdye6BjX_F-q6H_LB52LzXcZvj9CaZoXrn_NYln8AaJYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814723568</pqid></control><display><type>article</type><title>Modulation of hyperthermic and relaxometric responses of magnetic iron oxide nanoparticles through ligand exchange provides design criteria for dual-functionality</title><source>Royal Society of Chemistry Journals</source><creator>Aluri, Esther Rani ; Shingte, Sameer D ; McKiernan, Eoin P ; Ferguson, Steven ; Brougham, Dermot F</creator><creatorcontrib>Aluri, Esther Rani ; Shingte, Sameer D ; McKiernan, Eoin P ; Ferguson, Steven ; Brougham, Dermot F</creatorcontrib><description>Magnetic iron oxide nanoparticles (MNPs) are the subject of intense study as theranostic tools that combine magnetic resonance imaging (MRI)-trackability with AC-field responsive heating. In this study, we report MNPs synthesised using a modification of an established thermal decomposition method which, following extensive parameter optimisation, provides strong hyperthermic heating efficacy that is reproducible batch to batch. The suspensions have an exceptional specific absorption rate of ∼2800 W g
−1
(intrinsic loss power, ILP ∼20.4 W m
2
g
−1
kA
−2
kHz
−1
) within a high concentration range (collective particle scenario) falling to ∼1000 W g
−1
(∼7.9 W m
2
g
−1
kA
−2
kHz
−1
) on full dispersion by dilution. The effect of stabilising ligand surface chemistry on the concentration-dependent hyperthermic and MRI efficacies was evaluated by ligand exchange/phase transfer from organic to aqueous and back to organic suspension, and on the formation of organogels. Fast field-cycling NMR relaxometry of the different suspensions reveals the role of moment dynamics and of subtle differences in particle and solvent diffusion in determining both the hyperthermic and relaxometric efficacies. These insights identify particle design compromises that are required to simultaneously optimise MNPs for the two applications.
Changes in hyperthermic and MRI efficacies of magnetic nanoparticle suspensions following ligand exchange/phase transfer and in the gel phase reveals how the responses are determined by moment dynamics and particle and solvent diffusion.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d3tc00489a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Design criteria ; Dilution ; Heating ; Iron oxides ; Ligands ; Magnetic resonance imaging ; Nanoparticles ; NMR ; Nuclear magnetic resonance ; Optimization ; Parameter modification ; Thermal decomposition</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2023-05, Vol.11 (19), p.6417-6428</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c276t-e6f9c25dfa0c4a4a597310aabef7521660d95e9320e3db774e9d65502fcef6953</cites><orcidid>0000-0002-1270-8415 ; 0000-0003-4622-2592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Aluri, Esther Rani</creatorcontrib><creatorcontrib>Shingte, Sameer D</creatorcontrib><creatorcontrib>McKiernan, Eoin P</creatorcontrib><creatorcontrib>Ferguson, Steven</creatorcontrib><creatorcontrib>Brougham, Dermot F</creatorcontrib><title>Modulation of hyperthermic and relaxometric responses of magnetic iron oxide nanoparticles through ligand exchange provides design criteria for dual-functionality</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Magnetic iron oxide nanoparticles (MNPs) are the subject of intense study as theranostic tools that combine magnetic resonance imaging (MRI)-trackability with AC-field responsive heating. In this study, we report MNPs synthesised using a modification of an established thermal decomposition method which, following extensive parameter optimisation, provides strong hyperthermic heating efficacy that is reproducible batch to batch. The suspensions have an exceptional specific absorption rate of ∼2800 W g
−1
(intrinsic loss power, ILP ∼20.4 W m
2
g
−1
kA
−2
kHz
−1
) within a high concentration range (collective particle scenario) falling to ∼1000 W g
−1
(∼7.9 W m
2
g
−1
kA
−2
kHz
−1
) on full dispersion by dilution. The effect of stabilising ligand surface chemistry on the concentration-dependent hyperthermic and MRI efficacies was evaluated by ligand exchange/phase transfer from organic to aqueous and back to organic suspension, and on the formation of organogels. Fast field-cycling NMR relaxometry of the different suspensions reveals the role of moment dynamics and of subtle differences in particle and solvent diffusion in determining both the hyperthermic and relaxometric efficacies. These insights identify particle design compromises that are required to simultaneously optimise MNPs for the two applications.
Changes in hyperthermic and MRI efficacies of magnetic nanoparticle suspensions following ligand exchange/phase transfer and in the gel phase reveals how the responses are determined by moment dynamics and particle and solvent diffusion.</description><subject>Design criteria</subject><subject>Dilution</subject><subject>Heating</subject><subject>Iron oxides</subject><subject>Ligands</subject><subject>Magnetic resonance imaging</subject><subject>Nanoparticles</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optimization</subject><subject>Parameter modification</subject><subject>Thermal decomposition</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkUFr3DAQhU1ooCHJpfeCoLeCG9myZOsYtk1bSOklPZuJPLIVvJI7ksvu3-kvjZwt6YAY8fj0eOIVxbuKf6q40DeDSIbzptNwVlzUXPKylaJ583qv1dviOsYnnqerVKf0RfH3RxjWGZILngXLpuOClCakvTMM_MAIZziEPSbKAmFcgo8YN3QPo8eUVUfb24MbkHnwYQHK6pyhNFFYx4nNbtys8GAm8COyhcKfTEeWjxs9M-QSkgNmA7Fhhbm0qzdbJJhdOl4V5xbmiNf_9mXx6-7Lw-5bef_z6_fd7X1p6lalEpXVppaDBW4aaEDqVlQc4BFt_nqlFB-0RC1qjmJ4bNsG9aCk5LU1aJWW4rL4cPLN-X6vGFP_FFbKGWJfd1XT1kKqLlMfT5ShECOh7Rdye6BjX_F-q6H_LB52LzXcZvj9CaZoXrn_NYln8AaJYw</recordid><startdate>20230518</startdate><enddate>20230518</enddate><creator>Aluri, Esther Rani</creator><creator>Shingte, Sameer D</creator><creator>McKiernan, Eoin P</creator><creator>Ferguson, Steven</creator><creator>Brougham, Dermot F</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1270-8415</orcidid><orcidid>https://orcid.org/0000-0003-4622-2592</orcidid></search><sort><creationdate>20230518</creationdate><title>Modulation of hyperthermic and relaxometric responses of magnetic iron oxide nanoparticles through ligand exchange provides design criteria for dual-functionality</title><author>Aluri, Esther Rani ; Shingte, Sameer D ; McKiernan, Eoin P ; Ferguson, Steven ; Brougham, Dermot F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-e6f9c25dfa0c4a4a597310aabef7521660d95e9320e3db774e9d65502fcef6953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Design criteria</topic><topic>Dilution</topic><topic>Heating</topic><topic>Iron oxides</topic><topic>Ligands</topic><topic>Magnetic resonance imaging</topic><topic>Nanoparticles</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optimization</topic><topic>Parameter modification</topic><topic>Thermal decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aluri, Esther Rani</creatorcontrib><creatorcontrib>Shingte, Sameer D</creatorcontrib><creatorcontrib>McKiernan, Eoin P</creatorcontrib><creatorcontrib>Ferguson, Steven</creatorcontrib><creatorcontrib>Brougham, Dermot F</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aluri, Esther Rani</au><au>Shingte, Sameer D</au><au>McKiernan, Eoin P</au><au>Ferguson, Steven</au><au>Brougham, Dermot F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of hyperthermic and relaxometric responses of magnetic iron oxide nanoparticles through ligand exchange provides design criteria for dual-functionality</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2023-05-18</date><risdate>2023</risdate><volume>11</volume><issue>19</issue><spage>6417</spage><epage>6428</epage><pages>6417-6428</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Magnetic iron oxide nanoparticles (MNPs) are the subject of intense study as theranostic tools that combine magnetic resonance imaging (MRI)-trackability with AC-field responsive heating. In this study, we report MNPs synthesised using a modification of an established thermal decomposition method which, following extensive parameter optimisation, provides strong hyperthermic heating efficacy that is reproducible batch to batch. The suspensions have an exceptional specific absorption rate of ∼2800 W g
−1
(intrinsic loss power, ILP ∼20.4 W m
2
g
−1
kA
−2
kHz
−1
) within a high concentration range (collective particle scenario) falling to ∼1000 W g
−1
(∼7.9 W m
2
g
−1
kA
−2
kHz
−1
) on full dispersion by dilution. The effect of stabilising ligand surface chemistry on the concentration-dependent hyperthermic and MRI efficacies was evaluated by ligand exchange/phase transfer from organic to aqueous and back to organic suspension, and on the formation of organogels. Fast field-cycling NMR relaxometry of the different suspensions reveals the role of moment dynamics and of subtle differences in particle and solvent diffusion in determining both the hyperthermic and relaxometric efficacies. These insights identify particle design compromises that are required to simultaneously optimise MNPs for the two applications.
Changes in hyperthermic and MRI efficacies of magnetic nanoparticle suspensions following ligand exchange/phase transfer and in the gel phase reveals how the responses are determined by moment dynamics and particle and solvent diffusion.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3tc00489a</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1270-8415</orcidid><orcidid>https://orcid.org/0000-0003-4622-2592</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7526 |
ispartof | Journal of materials chemistry. C, Materials for optical and electronic devices, 2023-05, Vol.11 (19), p.6417-6428 |
issn | 2050-7526 2050-7534 |
language | eng |
recordid | cdi_rsc_primary_d3tc00489a |
source | Royal Society of Chemistry Journals |
subjects | Design criteria Dilution Heating Iron oxides Ligands Magnetic resonance imaging Nanoparticles NMR Nuclear magnetic resonance Optimization Parameter modification Thermal decomposition |
title | Modulation of hyperthermic and relaxometric responses of magnetic iron oxide nanoparticles through ligand exchange provides design criteria for dual-functionality |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A32%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20hyperthermic%20and%20relaxometric%20responses%20of%20magnetic%20iron%20oxide%20nanoparticles%20through%20ligand%20exchange%20provides%20design%20criteria%20for%20dual-functionality&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Aluri,%20Esther%20Rani&rft.date=2023-05-18&rft.volume=11&rft.issue=19&rft.spage=6417&rft.epage=6428&rft.pages=6417-6428&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d3tc00489a&rft_dat=%3Cproquest_rsc_p%3E2814723568%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c276t-e6f9c25dfa0c4a4a597310aabef7521660d95e9320e3db774e9d65502fcef6953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2814723568&rft_id=info:pmid/&rfr_iscdi=true |