Loading…

Modulation of hyperthermic and relaxometric responses of magnetic iron oxide nanoparticles through ligand exchange provides design criteria for dual-functionality

Magnetic iron oxide nanoparticles (MNPs) are the subject of intense study as theranostic tools that combine magnetic resonance imaging (MRI)-trackability with AC-field responsive heating. In this study, we report MNPs synthesised using a modification of an established thermal decomposition method wh...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2023-05, Vol.11 (19), p.6417-6428
Main Authors: Aluri, Esther Rani, Shingte, Sameer D, McKiernan, Eoin P, Ferguson, Steven, Brougham, Dermot F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c276t-e6f9c25dfa0c4a4a597310aabef7521660d95e9320e3db774e9d65502fcef6953
container_end_page 6428
container_issue 19
container_start_page 6417
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 11
creator Aluri, Esther Rani
Shingte, Sameer D
McKiernan, Eoin P
Ferguson, Steven
Brougham, Dermot F
description Magnetic iron oxide nanoparticles (MNPs) are the subject of intense study as theranostic tools that combine magnetic resonance imaging (MRI)-trackability with AC-field responsive heating. In this study, we report MNPs synthesised using a modification of an established thermal decomposition method which, following extensive parameter optimisation, provides strong hyperthermic heating efficacy that is reproducible batch to batch. The suspensions have an exceptional specific absorption rate of ∼2800 W g −1 (intrinsic loss power, ILP ∼20.4 W m 2 g −1 kA −2 kHz −1 ) within a high concentration range (collective particle scenario) falling to ∼1000 W g −1 (∼7.9 W m 2 g −1 kA −2 kHz −1 ) on full dispersion by dilution. The effect of stabilising ligand surface chemistry on the concentration-dependent hyperthermic and MRI efficacies was evaluated by ligand exchange/phase transfer from organic to aqueous and back to organic suspension, and on the formation of organogels. Fast field-cycling NMR relaxometry of the different suspensions reveals the role of moment dynamics and of subtle differences in particle and solvent diffusion in determining both the hyperthermic and relaxometric efficacies. These insights identify particle design compromises that are required to simultaneously optimise MNPs for the two applications. Changes in hyperthermic and MRI efficacies of magnetic nanoparticle suspensions following ligand exchange/phase transfer and in the gel phase reveals how the responses are determined by moment dynamics and particle and solvent diffusion.
doi_str_mv 10.1039/d3tc00489a
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d3tc00489a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814723568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-e6f9c25dfa0c4a4a597310aabef7521660d95e9320e3db774e9d65502fcef6953</originalsourceid><addsrcrecordid>eNpFkUFr3DAQhU1ooCHJpfeCoLeCG9myZOsYtk1bSOklPZuJPLIVvJI7ksvu3-kvjZwt6YAY8fj0eOIVxbuKf6q40DeDSIbzptNwVlzUXPKylaJ583qv1dviOsYnnqerVKf0RfH3RxjWGZILngXLpuOClCakvTMM_MAIZziEPSbKAmFcgo8YN3QPo8eUVUfb24MbkHnwYQHK6pyhNFFYx4nNbtys8GAm8COyhcKfTEeWjxs9M-QSkgNmA7Fhhbm0qzdbJJhdOl4V5xbmiNf_9mXx6-7Lw-5bef_z6_fd7X1p6lalEpXVppaDBW4aaEDqVlQc4BFt_nqlFB-0RC1qjmJ4bNsG9aCk5LU1aJWW4rL4cPLN-X6vGFP_FFbKGWJfd1XT1kKqLlMfT5ShECOh7Rdye6BjX_F-q6H_LB52LzXcZvj9CaZoXrn_NYln8AaJYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814723568</pqid></control><display><type>article</type><title>Modulation of hyperthermic and relaxometric responses of magnetic iron oxide nanoparticles through ligand exchange provides design criteria for dual-functionality</title><source>Royal Society of Chemistry Journals</source><creator>Aluri, Esther Rani ; Shingte, Sameer D ; McKiernan, Eoin P ; Ferguson, Steven ; Brougham, Dermot F</creator><creatorcontrib>Aluri, Esther Rani ; Shingte, Sameer D ; McKiernan, Eoin P ; Ferguson, Steven ; Brougham, Dermot F</creatorcontrib><description>Magnetic iron oxide nanoparticles (MNPs) are the subject of intense study as theranostic tools that combine magnetic resonance imaging (MRI)-trackability with AC-field responsive heating. In this study, we report MNPs synthesised using a modification of an established thermal decomposition method which, following extensive parameter optimisation, provides strong hyperthermic heating efficacy that is reproducible batch to batch. The suspensions have an exceptional specific absorption rate of ∼2800 W g −1 (intrinsic loss power, ILP ∼20.4 W m 2 g −1 kA −2 kHz −1 ) within a high concentration range (collective particle scenario) falling to ∼1000 W g −1 (∼7.9 W m 2 g −1 kA −2 kHz −1 ) on full dispersion by dilution. The effect of stabilising ligand surface chemistry on the concentration-dependent hyperthermic and MRI efficacies was evaluated by ligand exchange/phase transfer from organic to aqueous and back to organic suspension, and on the formation of organogels. Fast field-cycling NMR relaxometry of the different suspensions reveals the role of moment dynamics and of subtle differences in particle and solvent diffusion in determining both the hyperthermic and relaxometric efficacies. These insights identify particle design compromises that are required to simultaneously optimise MNPs for the two applications. Changes in hyperthermic and MRI efficacies of magnetic nanoparticle suspensions following ligand exchange/phase transfer and in the gel phase reveals how the responses are determined by moment dynamics and particle and solvent diffusion.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d3tc00489a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Design criteria ; Dilution ; Heating ; Iron oxides ; Ligands ; Magnetic resonance imaging ; Nanoparticles ; NMR ; Nuclear magnetic resonance ; Optimization ; Parameter modification ; Thermal decomposition</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2023-05, Vol.11 (19), p.6417-6428</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c276t-e6f9c25dfa0c4a4a597310aabef7521660d95e9320e3db774e9d65502fcef6953</cites><orcidid>0000-0002-1270-8415 ; 0000-0003-4622-2592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Aluri, Esther Rani</creatorcontrib><creatorcontrib>Shingte, Sameer D</creatorcontrib><creatorcontrib>McKiernan, Eoin P</creatorcontrib><creatorcontrib>Ferguson, Steven</creatorcontrib><creatorcontrib>Brougham, Dermot F</creatorcontrib><title>Modulation of hyperthermic and relaxometric responses of magnetic iron oxide nanoparticles through ligand exchange provides design criteria for dual-functionality</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Magnetic iron oxide nanoparticles (MNPs) are the subject of intense study as theranostic tools that combine magnetic resonance imaging (MRI)-trackability with AC-field responsive heating. In this study, we report MNPs synthesised using a modification of an established thermal decomposition method which, following extensive parameter optimisation, provides strong hyperthermic heating efficacy that is reproducible batch to batch. The suspensions have an exceptional specific absorption rate of ∼2800 W g −1 (intrinsic loss power, ILP ∼20.4 W m 2 g −1 kA −2 kHz −1 ) within a high concentration range (collective particle scenario) falling to ∼1000 W g −1 (∼7.9 W m 2 g −1 kA −2 kHz −1 ) on full dispersion by dilution. The effect of stabilising ligand surface chemistry on the concentration-dependent hyperthermic and MRI efficacies was evaluated by ligand exchange/phase transfer from organic to aqueous and back to organic suspension, and on the formation of organogels. Fast field-cycling NMR relaxometry of the different suspensions reveals the role of moment dynamics and of subtle differences in particle and solvent diffusion in determining both the hyperthermic and relaxometric efficacies. These insights identify particle design compromises that are required to simultaneously optimise MNPs for the two applications. Changes in hyperthermic and MRI efficacies of magnetic nanoparticle suspensions following ligand exchange/phase transfer and in the gel phase reveals how the responses are determined by moment dynamics and particle and solvent diffusion.</description><subject>Design criteria</subject><subject>Dilution</subject><subject>Heating</subject><subject>Iron oxides</subject><subject>Ligands</subject><subject>Magnetic resonance imaging</subject><subject>Nanoparticles</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optimization</subject><subject>Parameter modification</subject><subject>Thermal decomposition</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkUFr3DAQhU1ooCHJpfeCoLeCG9myZOsYtk1bSOklPZuJPLIVvJI7ksvu3-kvjZwt6YAY8fj0eOIVxbuKf6q40DeDSIbzptNwVlzUXPKylaJ583qv1dviOsYnnqerVKf0RfH3RxjWGZILngXLpuOClCakvTMM_MAIZziEPSbKAmFcgo8YN3QPo8eUVUfb24MbkHnwYQHK6pyhNFFYx4nNbtys8GAm8COyhcKfTEeWjxs9M-QSkgNmA7Fhhbm0qzdbJJhdOl4V5xbmiNf_9mXx6-7Lw-5bef_z6_fd7X1p6lalEpXVppaDBW4aaEDqVlQc4BFt_nqlFB-0RC1qjmJ4bNsG9aCk5LU1aJWW4rL4cPLN-X6vGFP_FFbKGWJfd1XT1kKqLlMfT5ShECOh7Rdye6BjX_F-q6H_LB52LzXcZvj9CaZoXrn_NYln8AaJYw</recordid><startdate>20230518</startdate><enddate>20230518</enddate><creator>Aluri, Esther Rani</creator><creator>Shingte, Sameer D</creator><creator>McKiernan, Eoin P</creator><creator>Ferguson, Steven</creator><creator>Brougham, Dermot F</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1270-8415</orcidid><orcidid>https://orcid.org/0000-0003-4622-2592</orcidid></search><sort><creationdate>20230518</creationdate><title>Modulation of hyperthermic and relaxometric responses of magnetic iron oxide nanoparticles through ligand exchange provides design criteria for dual-functionality</title><author>Aluri, Esther Rani ; Shingte, Sameer D ; McKiernan, Eoin P ; Ferguson, Steven ; Brougham, Dermot F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-e6f9c25dfa0c4a4a597310aabef7521660d95e9320e3db774e9d65502fcef6953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Design criteria</topic><topic>Dilution</topic><topic>Heating</topic><topic>Iron oxides</topic><topic>Ligands</topic><topic>Magnetic resonance imaging</topic><topic>Nanoparticles</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optimization</topic><topic>Parameter modification</topic><topic>Thermal decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aluri, Esther Rani</creatorcontrib><creatorcontrib>Shingte, Sameer D</creatorcontrib><creatorcontrib>McKiernan, Eoin P</creatorcontrib><creatorcontrib>Ferguson, Steven</creatorcontrib><creatorcontrib>Brougham, Dermot F</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aluri, Esther Rani</au><au>Shingte, Sameer D</au><au>McKiernan, Eoin P</au><au>Ferguson, Steven</au><au>Brougham, Dermot F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of hyperthermic and relaxometric responses of magnetic iron oxide nanoparticles through ligand exchange provides design criteria for dual-functionality</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2023-05-18</date><risdate>2023</risdate><volume>11</volume><issue>19</issue><spage>6417</spage><epage>6428</epage><pages>6417-6428</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Magnetic iron oxide nanoparticles (MNPs) are the subject of intense study as theranostic tools that combine magnetic resonance imaging (MRI)-trackability with AC-field responsive heating. In this study, we report MNPs synthesised using a modification of an established thermal decomposition method which, following extensive parameter optimisation, provides strong hyperthermic heating efficacy that is reproducible batch to batch. The suspensions have an exceptional specific absorption rate of ∼2800 W g −1 (intrinsic loss power, ILP ∼20.4 W m 2 g −1 kA −2 kHz −1 ) within a high concentration range (collective particle scenario) falling to ∼1000 W g −1 (∼7.9 W m 2 g −1 kA −2 kHz −1 ) on full dispersion by dilution. The effect of stabilising ligand surface chemistry on the concentration-dependent hyperthermic and MRI efficacies was evaluated by ligand exchange/phase transfer from organic to aqueous and back to organic suspension, and on the formation of organogels. Fast field-cycling NMR relaxometry of the different suspensions reveals the role of moment dynamics and of subtle differences in particle and solvent diffusion in determining both the hyperthermic and relaxometric efficacies. These insights identify particle design compromises that are required to simultaneously optimise MNPs for the two applications. Changes in hyperthermic and MRI efficacies of magnetic nanoparticle suspensions following ligand exchange/phase transfer and in the gel phase reveals how the responses are determined by moment dynamics and particle and solvent diffusion.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3tc00489a</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1270-8415</orcidid><orcidid>https://orcid.org/0000-0003-4622-2592</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2023-05, Vol.11 (19), p.6417-6428
issn 2050-7526
2050-7534
language eng
recordid cdi_rsc_primary_d3tc00489a
source Royal Society of Chemistry Journals
subjects Design criteria
Dilution
Heating
Iron oxides
Ligands
Magnetic resonance imaging
Nanoparticles
NMR
Nuclear magnetic resonance
Optimization
Parameter modification
Thermal decomposition
title Modulation of hyperthermic and relaxometric responses of magnetic iron oxide nanoparticles through ligand exchange provides design criteria for dual-functionality
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A32%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20hyperthermic%20and%20relaxometric%20responses%20of%20magnetic%20iron%20oxide%20nanoparticles%20through%20ligand%20exchange%20provides%20design%20criteria%20for%20dual-functionality&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Aluri,%20Esther%20Rani&rft.date=2023-05-18&rft.volume=11&rft.issue=19&rft.spage=6417&rft.epage=6428&rft.pages=6417-6428&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d3tc00489a&rft_dat=%3Cproquest_rsc_p%3E2814723568%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c276t-e6f9c25dfa0c4a4a597310aabef7521660d95e9320e3db774e9d65502fcef6953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2814723568&rft_id=info:pmid/&rfr_iscdi=true