Loading…
Solid-liquid separation of lignocellulosic sugars from biomass by rotating ceramic disc filtration
In many biomass conversion processes, the separation of cellulosic sugars from residual, lignin-rich solids is a critical step, and achieving high recovery yields of sugars by conventional tangential crossflow and vacuum filtration is challenged by the presence of biomass solids, which rapidly foul...
Saved in:
Published in: | Green chemistry : an international journal and green chemistry resource : GC 2024-11, Vol.26 (23), p.11587-11599 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c197t-9af0ee8d3a8718d56521e8baf33909eefef115c889bafda6668a1e041deeb0bf3 |
container_end_page | 11599 |
container_issue | 23 |
container_start_page | 11587 |
container_title | Green chemistry : an international journal and green chemistry resource : GC |
container_volume | 26 |
creator | Saboe, Patrick O Li, Yudong Tomashek, Emily G Tan, Eric C. D Chen, Xiaowen Chirban, Louis A Chen, Yian Schell, Daniel J Karp, Eric M Beckham, Gregg T |
description | In many biomass conversion processes, the separation of cellulosic sugars from residual, lignin-rich solids is a critical step, and achieving high recovery yields of sugars by conventional tangential crossflow and vacuum filtration is challenged by the presence of biomass solids, which rapidly foul filters, resulting in decreased throughput. Considering the performance limitations of traditional filtration methods, dynamic filtration, which generates high shear at the membrane surface to decrease fouling, is emerging as a viable alternative for demanding solid-liquid separations. For high solids separations, there is little available information regarding the performance, limitations, and energy consumption of dynamic filtration. To that end, here we characterized the performance of a dynamic filtration module, specifically a rotating ceramic disc (RCD) filter, for the aseptic recovery of cellulosic sugars from biomass solids following pretreatment and enzymatic hydrolysis. We show how RCD rotational velocity and percent biomass solids impact the filter throughput. Additionally, we used computational fluid dynamics (CFD) simulations to estimate the shear rate at the membrane surface and to visualize hydrodynamic profiles within the module. With the combined CFD simulations and experimental results, we estimated the energy demand and operating expenses for a viable dynamic filtration system operating with a lignocellulosic feed slurry. Our results indicate that an RCD filter can achieve ≥95% recovery of sugars and produce a retentate slurry containing 12 wt% insoluble solids with low energy consumption (a 2.2-fold improvement over cross-flow filtration) and low operating costs ($0.06 per kg sugars). These results show a viable path towards operationally reliable, energy efficient, and cost-effective separations of sterilized cellulosic sugars from biomass solids and highlight the potential of dynamic filtration systems for challenging solid-liquid separations.
A simple, low energy, and productive filtration method to clarify biomass hydrolysate to enable biochemical and thermochemical pathways to biofuels and biochemicals. |
doi_str_mv | 10.1039/d4gc04533e |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d4gc04533e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132582431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c197t-9af0ee8d3a8718d56521e8baf33909eefef115c889bafda6668a1e041deeb0bf3</originalsourceid><addsrcrecordid>eNpF0UtPwzAMAOAKgcQYXLgjRXBDKsRN-jqiMQbSJA7AOUpTp2Rqmy1JD_v3dBSNky3rs2XZUXQN9AEoKx9r3ijKU8bwJJoBz1hcJjk9PeZZch5deL-hFCDP-CyqPmxr6rg1u8HUxONWOhmM7YnVpDVNbxW27dBabxTxQyOdJ9rZjlTGdtJ7Uu2Js2Fs6Rui0MludLXximjThmnUZXSmZevx6i_Oo6-X5efiNV6_r94WT-tYQZmHuJSaIhY1k0UORZ1maQJYVFIzVtISUaMGSFVRlGOtllmWFRKQcqgRK1ppNo9up7nWByO8MgHVt7J9jyqIhOclcBjR3YS2zu4G9EFs7OD6cS_BgCVpkXB2UPeTUs5671CLrTOddHsBVBwOLZ75avF76OWIbybsvDq6_0ewH6BGfCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132582431</pqid></control><display><type>article</type><title>Solid-liquid separation of lignocellulosic sugars from biomass by rotating ceramic disc filtration</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Saboe, Patrick O ; Li, Yudong ; Tomashek, Emily G ; Tan, Eric C. D ; Chen, Xiaowen ; Chirban, Louis A ; Chen, Yian ; Schell, Daniel J ; Karp, Eric M ; Beckham, Gregg T</creator><creatorcontrib>Saboe, Patrick O ; Li, Yudong ; Tomashek, Emily G ; Tan, Eric C. D ; Chen, Xiaowen ; Chirban, Louis A ; Chen, Yian ; Schell, Daniel J ; Karp, Eric M ; Beckham, Gregg T ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>In many biomass conversion processes, the separation of cellulosic sugars from residual, lignin-rich solids is a critical step, and achieving high recovery yields of sugars by conventional tangential crossflow and vacuum filtration is challenged by the presence of biomass solids, which rapidly foul filters, resulting in decreased throughput. Considering the performance limitations of traditional filtration methods, dynamic filtration, which generates high shear at the membrane surface to decrease fouling, is emerging as a viable alternative for demanding solid-liquid separations. For high solids separations, there is little available information regarding the performance, limitations, and energy consumption of dynamic filtration. To that end, here we characterized the performance of a dynamic filtration module, specifically a rotating ceramic disc (RCD) filter, for the aseptic recovery of cellulosic sugars from biomass solids following pretreatment and enzymatic hydrolysis. We show how RCD rotational velocity and percent biomass solids impact the filter throughput. Additionally, we used computational fluid dynamics (CFD) simulations to estimate the shear rate at the membrane surface and to visualize hydrodynamic profiles within the module. With the combined CFD simulations and experimental results, we estimated the energy demand and operating expenses for a viable dynamic filtration system operating with a lignocellulosic feed slurry. Our results indicate that an RCD filter can achieve ≥95% recovery of sugars and produce a retentate slurry containing 12 wt% insoluble solids with low energy consumption (a 2.2-fold improvement over cross-flow filtration) and low operating costs ($0.06 per kg sugars). These results show a viable path towards operationally reliable, energy efficient, and cost-effective separations of sterilized cellulosic sugars from biomass solids and highlight the potential of dynamic filtration systems for challenging solid-liquid separations.
A simple, low energy, and productive filtration method to clarify biomass hydrolysate to enable biochemical and thermochemical pathways to biofuels and biochemicals.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/d4gc04533e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Biomass ; Biomass energy production ; bioseparations ; Computational fluid dynamics ; Cross flow ; dynamic filtration ; Energy consumption ; Energy demand ; Energy efficiency ; Filtration ; Fluid dynamics ; Fluid filters ; Hydrodynamics ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Lignocellulose ; Membranes ; Modules ; Operating costs ; Recovery ; rotating ceramic disc ; Rotating liquids ; Rotation ; Separation ; Shear rate ; Slurries ; solid-liquid separation ; Solids ; Sugar ; techno-economic analysis ; Vacuum filtration</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2024-11, Vol.26 (23), p.11587-11599</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c197t-9af0ee8d3a8718d56521e8baf33909eefef115c889bafda6668a1e041deeb0bf3</cites><orcidid>0000-0002-9110-2410 ; 0000-0002-3084-9705 ; 0000-0003-3605-5145 ; 0000-0002-3480-212X ; 0000-0002-7024-433X ; 0000000336055145 ; 0000000291102410 ; 0000000230849705 ; 000000027024433X ; 000000023480212X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2479141$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Saboe, Patrick O</creatorcontrib><creatorcontrib>Li, Yudong</creatorcontrib><creatorcontrib>Tomashek, Emily G</creatorcontrib><creatorcontrib>Tan, Eric C. D</creatorcontrib><creatorcontrib>Chen, Xiaowen</creatorcontrib><creatorcontrib>Chirban, Louis A</creatorcontrib><creatorcontrib>Chen, Yian</creatorcontrib><creatorcontrib>Schell, Daniel J</creatorcontrib><creatorcontrib>Karp, Eric M</creatorcontrib><creatorcontrib>Beckham, Gregg T</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Solid-liquid separation of lignocellulosic sugars from biomass by rotating ceramic disc filtration</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>In many biomass conversion processes, the separation of cellulosic sugars from residual, lignin-rich solids is a critical step, and achieving high recovery yields of sugars by conventional tangential crossflow and vacuum filtration is challenged by the presence of biomass solids, which rapidly foul filters, resulting in decreased throughput. Considering the performance limitations of traditional filtration methods, dynamic filtration, which generates high shear at the membrane surface to decrease fouling, is emerging as a viable alternative for demanding solid-liquid separations. For high solids separations, there is little available information regarding the performance, limitations, and energy consumption of dynamic filtration. To that end, here we characterized the performance of a dynamic filtration module, specifically a rotating ceramic disc (RCD) filter, for the aseptic recovery of cellulosic sugars from biomass solids following pretreatment and enzymatic hydrolysis. We show how RCD rotational velocity and percent biomass solids impact the filter throughput. Additionally, we used computational fluid dynamics (CFD) simulations to estimate the shear rate at the membrane surface and to visualize hydrodynamic profiles within the module. With the combined CFD simulations and experimental results, we estimated the energy demand and operating expenses for a viable dynamic filtration system operating with a lignocellulosic feed slurry. Our results indicate that an RCD filter can achieve ≥95% recovery of sugars and produce a retentate slurry containing 12 wt% insoluble solids with low energy consumption (a 2.2-fold improvement over cross-flow filtration) and low operating costs ($0.06 per kg sugars). These results show a viable path towards operationally reliable, energy efficient, and cost-effective separations of sterilized cellulosic sugars from biomass solids and highlight the potential of dynamic filtration systems for challenging solid-liquid separations.
A simple, low energy, and productive filtration method to clarify biomass hydrolysate to enable biochemical and thermochemical pathways to biofuels and biochemicals.</description><subject>Biomass</subject><subject>Biomass energy production</subject><subject>bioseparations</subject><subject>Computational fluid dynamics</subject><subject>Cross flow</subject><subject>dynamic filtration</subject><subject>Energy consumption</subject><subject>Energy demand</subject><subject>Energy efficiency</subject><subject>Filtration</subject><subject>Fluid dynamics</subject><subject>Fluid filters</subject><subject>Hydrodynamics</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Lignocellulose</subject><subject>Membranes</subject><subject>Modules</subject><subject>Operating costs</subject><subject>Recovery</subject><subject>rotating ceramic disc</subject><subject>Rotating liquids</subject><subject>Rotation</subject><subject>Separation</subject><subject>Shear rate</subject><subject>Slurries</subject><subject>solid-liquid separation</subject><subject>Solids</subject><subject>Sugar</subject><subject>techno-economic analysis</subject><subject>Vacuum filtration</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpF0UtPwzAMAOAKgcQYXLgjRXBDKsRN-jqiMQbSJA7AOUpTp2Rqmy1JD_v3dBSNky3rs2XZUXQN9AEoKx9r3ijKU8bwJJoBz1hcJjk9PeZZch5deL-hFCDP-CyqPmxr6rg1u8HUxONWOhmM7YnVpDVNbxW27dBabxTxQyOdJ9rZjlTGdtJ7Uu2Js2Fs6Rui0MludLXximjThmnUZXSmZevx6i_Oo6-X5efiNV6_r94WT-tYQZmHuJSaIhY1k0UORZ1maQJYVFIzVtISUaMGSFVRlGOtllmWFRKQcqgRK1ppNo9up7nWByO8MgHVt7J9jyqIhOclcBjR3YS2zu4G9EFs7OD6cS_BgCVpkXB2UPeTUs5671CLrTOddHsBVBwOLZ75avF76OWIbybsvDq6_0ewH6BGfCg</recordid><startdate>20241125</startdate><enddate>20241125</enddate><creator>Saboe, Patrick O</creator><creator>Li, Yudong</creator><creator>Tomashek, Emily G</creator><creator>Tan, Eric C. D</creator><creator>Chen, Xiaowen</creator><creator>Chirban, Louis A</creator><creator>Chen, Yian</creator><creator>Schell, Daniel J</creator><creator>Karp, Eric M</creator><creator>Beckham, Gregg T</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9110-2410</orcidid><orcidid>https://orcid.org/0000-0002-3084-9705</orcidid><orcidid>https://orcid.org/0000-0003-3605-5145</orcidid><orcidid>https://orcid.org/0000-0002-3480-212X</orcidid><orcidid>https://orcid.org/0000-0002-7024-433X</orcidid><orcidid>https://orcid.org/0000000336055145</orcidid><orcidid>https://orcid.org/0000000291102410</orcidid><orcidid>https://orcid.org/0000000230849705</orcidid><orcidid>https://orcid.org/000000027024433X</orcidid><orcidid>https://orcid.org/000000023480212X</orcidid></search><sort><creationdate>20241125</creationdate><title>Solid-liquid separation of lignocellulosic sugars from biomass by rotating ceramic disc filtration</title><author>Saboe, Patrick O ; Li, Yudong ; Tomashek, Emily G ; Tan, Eric C. D ; Chen, Xiaowen ; Chirban, Louis A ; Chen, Yian ; Schell, Daniel J ; Karp, Eric M ; Beckham, Gregg T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c197t-9af0ee8d3a8718d56521e8baf33909eefef115c889bafda6668a1e041deeb0bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomass</topic><topic>Biomass energy production</topic><topic>bioseparations</topic><topic>Computational fluid dynamics</topic><topic>Cross flow</topic><topic>dynamic filtration</topic><topic>Energy consumption</topic><topic>Energy demand</topic><topic>Energy efficiency</topic><topic>Filtration</topic><topic>Fluid dynamics</topic><topic>Fluid filters</topic><topic>Hydrodynamics</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Lignocellulose</topic><topic>Membranes</topic><topic>Modules</topic><topic>Operating costs</topic><topic>Recovery</topic><topic>rotating ceramic disc</topic><topic>Rotating liquids</topic><topic>Rotation</topic><topic>Separation</topic><topic>Shear rate</topic><topic>Slurries</topic><topic>solid-liquid separation</topic><topic>Solids</topic><topic>Sugar</topic><topic>techno-economic analysis</topic><topic>Vacuum filtration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saboe, Patrick O</creatorcontrib><creatorcontrib>Li, Yudong</creatorcontrib><creatorcontrib>Tomashek, Emily G</creatorcontrib><creatorcontrib>Tan, Eric C. D</creatorcontrib><creatorcontrib>Chen, Xiaowen</creatorcontrib><creatorcontrib>Chirban, Louis A</creatorcontrib><creatorcontrib>Chen, Yian</creatorcontrib><creatorcontrib>Schell, Daniel J</creatorcontrib><creatorcontrib>Karp, Eric M</creatorcontrib><creatorcontrib>Beckham, Gregg T</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saboe, Patrick O</au><au>Li, Yudong</au><au>Tomashek, Emily G</au><au>Tan, Eric C. D</au><au>Chen, Xiaowen</au><au>Chirban, Louis A</au><au>Chen, Yian</au><au>Schell, Daniel J</au><au>Karp, Eric M</au><au>Beckham, Gregg T</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid-liquid separation of lignocellulosic sugars from biomass by rotating ceramic disc filtration</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2024-11-25</date><risdate>2024</risdate><volume>26</volume><issue>23</issue><spage>11587</spage><epage>11599</epage><pages>11587-11599</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>In many biomass conversion processes, the separation of cellulosic sugars from residual, lignin-rich solids is a critical step, and achieving high recovery yields of sugars by conventional tangential crossflow and vacuum filtration is challenged by the presence of biomass solids, which rapidly foul filters, resulting in decreased throughput. Considering the performance limitations of traditional filtration methods, dynamic filtration, which generates high shear at the membrane surface to decrease fouling, is emerging as a viable alternative for demanding solid-liquid separations. For high solids separations, there is little available information regarding the performance, limitations, and energy consumption of dynamic filtration. To that end, here we characterized the performance of a dynamic filtration module, specifically a rotating ceramic disc (RCD) filter, for the aseptic recovery of cellulosic sugars from biomass solids following pretreatment and enzymatic hydrolysis. We show how RCD rotational velocity and percent biomass solids impact the filter throughput. Additionally, we used computational fluid dynamics (CFD) simulations to estimate the shear rate at the membrane surface and to visualize hydrodynamic profiles within the module. With the combined CFD simulations and experimental results, we estimated the energy demand and operating expenses for a viable dynamic filtration system operating with a lignocellulosic feed slurry. Our results indicate that an RCD filter can achieve ≥95% recovery of sugars and produce a retentate slurry containing 12 wt% insoluble solids with low energy consumption (a 2.2-fold improvement over cross-flow filtration) and low operating costs ($0.06 per kg sugars). These results show a viable path towards operationally reliable, energy efficient, and cost-effective separations of sterilized cellulosic sugars from biomass solids and highlight the potential of dynamic filtration systems for challenging solid-liquid separations.
A simple, low energy, and productive filtration method to clarify biomass hydrolysate to enable biochemical and thermochemical pathways to biofuels and biochemicals.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4gc04533e</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9110-2410</orcidid><orcidid>https://orcid.org/0000-0002-3084-9705</orcidid><orcidid>https://orcid.org/0000-0003-3605-5145</orcidid><orcidid>https://orcid.org/0000-0002-3480-212X</orcidid><orcidid>https://orcid.org/0000-0002-7024-433X</orcidid><orcidid>https://orcid.org/0000000336055145</orcidid><orcidid>https://orcid.org/0000000291102410</orcidid><orcidid>https://orcid.org/0000000230849705</orcidid><orcidid>https://orcid.org/000000027024433X</orcidid><orcidid>https://orcid.org/000000023480212X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9262 |
ispartof | Green chemistry : an international journal and green chemistry resource : GC, 2024-11, Vol.26 (23), p.11587-11599 |
issn | 1463-9262 1463-9270 |
language | eng |
recordid | cdi_rsc_primary_d4gc04533e |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Biomass Biomass energy production bioseparations Computational fluid dynamics Cross flow dynamic filtration Energy consumption Energy demand Energy efficiency Filtration Fluid dynamics Fluid filters Hydrodynamics INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Lignocellulose Membranes Modules Operating costs Recovery rotating ceramic disc Rotating liquids Rotation Separation Shear rate Slurries solid-liquid separation Solids Sugar techno-economic analysis Vacuum filtration |
title | Solid-liquid separation of lignocellulosic sugars from biomass by rotating ceramic disc filtration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid-liquid%20separation%20of%20lignocellulosic%20sugars%20from%20biomass%20by%20rotating%20ceramic%20disc%20filtration&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Saboe,%20Patrick%20O&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2024-11-25&rft.volume=26&rft.issue=23&rft.spage=11587&rft.epage=11599&rft.pages=11587-11599&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/d4gc04533e&rft_dat=%3Cproquest_rsc_p%3E3132582431%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c197t-9af0ee8d3a8718d56521e8baf33909eefef115c889bafda6668a1e041deeb0bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3132582431&rft_id=info:pmid/&rfr_iscdi=true |