Loading…
Design, docking optimization, and evaluation of biotin-PEG4-1,8-naphthalimide as a potent and safe antitumor agent with dual targeting of ferroptosis and DNA
A set of biotin-polyethylene glycol (PEG)-naphthalimide derivatives 4a-4h with dual targeting of ferroptosis and DNA were designed and optimized using docking simulation as antitumor agents. Docking simulation optimization results indicated that biotin-PEG4-piperazine-1,8-naphthalimide 4d should be...
Saved in:
Published in: | MedChemComm 2024-05, Vol.15 (5), p.164-1651 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A set of biotin-polyethylene glycol (PEG)-naphthalimide derivatives
4a-4h
with dual targeting of ferroptosis and DNA were designed and optimized using docking simulation as antitumor agents. Docking simulation optimization results indicated that biotin-PEG4-piperazine-1,8-naphthalimide
4d
should be the best candidate among these designed compounds
4a-4h
, and therefore, we synthesized and evaluated it as a novel antitumor agent. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and MGC-803 and U251 xenograft models identified
4d
as a good candidate antitumor agent with potent efficacy and safety profiles, compared with amonafide and temozolomide. The findings of the docking simulations, fluorescence intercalator displacement (FID), western blot, comet, 5-ethynyl-2′-deoxyuridine (EdU), flow cytometry, transmission electron microscopy, and BODIPY-581/591-C11, FerroOrange, and dihydroethidium (DHE) fluorescent probe assays revealed that
4d
could induce DNA damage, affect DNA synthesis, and cause cell cycle arrest in the S phase in MGC-803 cells. Also, it could induce lipid peroxidation and thus lead to ferroptosis in MGC-803 cells, indicating that it mainly exerted antitumor effects through dual targeting of ferroptosis and DNA. These results suggested that it was feasible to design, optimize using docking simulation, and evaluate the potency and safety of biotin-PEG-1,8-naphthalimide as a antitumor agent with dual targeting of ferroptosis and DNA, based on a multi-target drug strategy.
A set of biotin-polyethylene glycol (PEG)-naphthalimide derivatives
4a-4h
with dual targeting of ferroptosis and DNA were designed and optimized using docking simulation as antitumor agents. |
---|---|
ISSN: | 2632-8682 2040-2503 2632-8682 2040-2511 |
DOI: | 10.1039/d4md00134f |