Loading…

Variability in HfO-based memristors described with a new bidimensional statistical technique

A new statistical analysis is presented to assess cycle-to-cycle variability in resistive memories. This method employs two-dimensional (2D) distributions of parameters to analyse both set and reset voltages and currents, coupled with a 2D coefficient of variation (CV). This 2D methodology significa...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2024-06, Vol.16 (22), p.1812-1818
Main Authors: Acal, C, Maldonado, D, Cantudo, A, González, M. B, Jiménez-Molinos, F, Campabadal, F, Roldán, J. B
Format: Article
Language:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1818
container_issue 22
container_start_page 1812
container_title Nanoscale
container_volume 16
creator Acal, C
Maldonado, D
Cantudo, A
González, M. B
Jiménez-Molinos, F
Campabadal, F
Roldán, J. B
description A new statistical analysis is presented to assess cycle-to-cycle variability in resistive memories. This method employs two-dimensional (2D) distributions of parameters to analyse both set and reset voltages and currents, coupled with a 2D coefficient of variation (CV). This 2D methodology significantly enhances the analysis, providing a more thorough and comprehensive understanding of the data compared to conventional one-dimensional methods. Resistive switching (RS) data from two different technologies based on hafnium oxide are used in the variability study. The 2D CV allows a more compact assessment of technology suitability for applications such as non-volatile memories, neuromorphic computing and random number generation circuits. A new two-dimensional statistical technique has been developed to describe cycle-to-cycle variability in resistive memories. A two-dimensional coefficient of variation is introduced to characterize variability in a better manner.
doi_str_mv 10.1039/d4nr01237b
format article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d4nr01237b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d4nr01237b</sourcerecordid><originalsourceid>FETCH-rsc_primary_d4nr01237b3</originalsourceid><addsrcrecordid>eNqFjj0LwjAURYMoWD8WdyF_oJo2paWzKN1cxEkoSZrSJ02qeZHSf28H0dHpHu65wyVkE7FdxHi-rxLrWBTzTE5IELOEhZxn8fTLaTInC8Q7Y2nOUx6Q21U4EBJa8AMFS4v6HEqBuqJGGwfoO4e00qgcyLHswTdUUKt7KqECoy1CZ0VL0Qs_rkGN7LVqLDxfekVmtWhRrz-5JNvT8XIoQoeqfDgwwg3l7zL_59-usUYN</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Variability in HfO-based memristors described with a new bidimensional statistical technique</title><source>Royal Society of Chemistry</source><creator>Acal, C ; Maldonado, D ; Cantudo, A ; González, M. B ; Jiménez-Molinos, F ; Campabadal, F ; Roldán, J. B</creator><creatorcontrib>Acal, C ; Maldonado, D ; Cantudo, A ; González, M. B ; Jiménez-Molinos, F ; Campabadal, F ; Roldán, J. B</creatorcontrib><description>A new statistical analysis is presented to assess cycle-to-cycle variability in resistive memories. This method employs two-dimensional (2D) distributions of parameters to analyse both set and reset voltages and currents, coupled with a 2D coefficient of variation (CV). This 2D methodology significantly enhances the analysis, providing a more thorough and comprehensive understanding of the data compared to conventional one-dimensional methods. Resistive switching (RS) data from two different technologies based on hafnium oxide are used in the variability study. The 2D CV allows a more compact assessment of technology suitability for applications such as non-volatile memories, neuromorphic computing and random number generation circuits. A new two-dimensional statistical technique has been developed to describe cycle-to-cycle variability in resistive memories. A two-dimensional coefficient of variation is introduced to characterize variability in a better manner.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d4nr01237b</identifier><ispartof>Nanoscale, 2024-06, Vol.16 (22), p.1812-1818</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Acal, C</creatorcontrib><creatorcontrib>Maldonado, D</creatorcontrib><creatorcontrib>Cantudo, A</creatorcontrib><creatorcontrib>González, M. B</creatorcontrib><creatorcontrib>Jiménez-Molinos, F</creatorcontrib><creatorcontrib>Campabadal, F</creatorcontrib><creatorcontrib>Roldán, J. B</creatorcontrib><title>Variability in HfO-based memristors described with a new bidimensional statistical technique</title><title>Nanoscale</title><description>A new statistical analysis is presented to assess cycle-to-cycle variability in resistive memories. This method employs two-dimensional (2D) distributions of parameters to analyse both set and reset voltages and currents, coupled with a 2D coefficient of variation (CV). This 2D methodology significantly enhances the analysis, providing a more thorough and comprehensive understanding of the data compared to conventional one-dimensional methods. Resistive switching (RS) data from two different technologies based on hafnium oxide are used in the variability study. The 2D CV allows a more compact assessment of technology suitability for applications such as non-volatile memories, neuromorphic computing and random number generation circuits. A new two-dimensional statistical technique has been developed to describe cycle-to-cycle variability in resistive memories. A two-dimensional coefficient of variation is introduced to characterize variability in a better manner.</description><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjj0LwjAURYMoWD8WdyF_oJo2paWzKN1cxEkoSZrSJ02qeZHSf28H0dHpHu65wyVkE7FdxHi-rxLrWBTzTE5IELOEhZxn8fTLaTInC8Q7Y2nOUx6Q21U4EBJa8AMFS4v6HEqBuqJGGwfoO4e00qgcyLHswTdUUKt7KqECoy1CZ0VL0Qs_rkGN7LVqLDxfekVmtWhRrz-5JNvT8XIoQoeqfDgwwg3l7zL_59-usUYN</recordid><startdate>20240606</startdate><enddate>20240606</enddate><creator>Acal, C</creator><creator>Maldonado, D</creator><creator>Cantudo, A</creator><creator>González, M. B</creator><creator>Jiménez-Molinos, F</creator><creator>Campabadal, F</creator><creator>Roldán, J. B</creator><scope/></search><sort><creationdate>20240606</creationdate><title>Variability in HfO-based memristors described with a new bidimensional statistical technique</title><author>Acal, C ; Maldonado, D ; Cantudo, A ; González, M. B ; Jiménez-Molinos, F ; Campabadal, F ; Roldán, J. B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d4nr01237b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Acal, C</creatorcontrib><creatorcontrib>Maldonado, D</creatorcontrib><creatorcontrib>Cantudo, A</creatorcontrib><creatorcontrib>González, M. B</creatorcontrib><creatorcontrib>Jiménez-Molinos, F</creatorcontrib><creatorcontrib>Campabadal, F</creatorcontrib><creatorcontrib>Roldán, J. B</creatorcontrib><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Acal, C</au><au>Maldonado, D</au><au>Cantudo, A</au><au>González, M. B</au><au>Jiménez-Molinos, F</au><au>Campabadal, F</au><au>Roldán, J. B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variability in HfO-based memristors described with a new bidimensional statistical technique</atitle><jtitle>Nanoscale</jtitle><date>2024-06-06</date><risdate>2024</risdate><volume>16</volume><issue>22</issue><spage>1812</spage><epage>1818</epage><pages>1812-1818</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>A new statistical analysis is presented to assess cycle-to-cycle variability in resistive memories. This method employs two-dimensional (2D) distributions of parameters to analyse both set and reset voltages and currents, coupled with a 2D coefficient of variation (CV). This 2D methodology significantly enhances the analysis, providing a more thorough and comprehensive understanding of the data compared to conventional one-dimensional methods. Resistive switching (RS) data from two different technologies based on hafnium oxide are used in the variability study. The 2D CV allows a more compact assessment of technology suitability for applications such as non-volatile memories, neuromorphic computing and random number generation circuits. A new two-dimensional statistical technique has been developed to describe cycle-to-cycle variability in resistive memories. A two-dimensional coefficient of variation is introduced to characterize variability in a better manner.</abstract><doi>10.1039/d4nr01237b</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2024-06, Vol.16 (22), p.1812-1818
issn 2040-3364
2040-3372
language
recordid cdi_rsc_primary_d4nr01237b
source Royal Society of Chemistry
title Variability in HfO-based memristors described with a new bidimensional statistical technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A41%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variability%20in%20HfO-based%20memristors%20described%20with%20a%20new%20bidimensional%20statistical%20technique&rft.jtitle=Nanoscale&rft.au=Acal,%20C&rft.date=2024-06-06&rft.volume=16&rft.issue=22&rft.spage=1812&rft.epage=1818&rft.pages=1812-1818&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d4nr01237b&rft_dat=%3Crsc%3Ed4nr01237b%3C/rsc%3E%3Cgrp_id%3Ecdi_FETCH-rsc_primary_d4nr01237b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true