Loading…

study of electronic, elastic, thermodynamic, photocatalytic properties of double antiperovskite, CsAgBiX (X = Cl, Br, I)

In this paper, we use density functional theory (DFT) using full-potential linearized augmented plan wave plus local orbital method (FP-LAPW + lo). The structural, electronic, optical, photocatalytic, mechanical, vibrational, and thermodynamical behaviors of new double antiperovskite (DAP) Cs 6 AgBi...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances 2024-11, Vol.14 (48), p.35348-35359
Main Authors: Sajid, Laraib, Saeed, M. Usman, Mashadi, S. H, Abid, S. Sheryar, Pervaiz, Shamiala, Ali, Zeeshan, Alanazi, Yousef Mohammed, Bacha, Aziz-Ur-Rahim, Saeed, Y
Format: Article
Language:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we use density functional theory (DFT) using full-potential linearized augmented plan wave plus local orbital method (FP-LAPW + lo). The structural, electronic, optical, photocatalytic, mechanical, vibrational, and thermodynamical behaviors of new double antiperovskite (DAP) Cs 6 AgBiX 2 (X = Cl, Br, I) were studied. The band structure was calculated with and without spin orbit coupling (SOC). Using the TB-mBJ approach (Hybrid) revealed bandgap values of 1.504 eV, 1.491 eV, and 1.392 eV for Cs 6 AgBiCl 2 , Cs 6 AgBiBr 2 , and Cs 6 AgBiI 2 , respectively. Optical characteristics were studied to ascertain the light absorbing ability of Cs 6 AgBiX 2 . The elastic and vibrational (phonon) properties demonstrate that Cs 6 AgBiCl 2 and Cs 6 AgBiBr 2 are stable but Cs 6 AgBiI 2 is not. The calculated optimal bandgap and high absorption coefficient of Cs 6 AgBiCl 2 and Cs 6 AgBiBr 2 , suggest their potential for solar cell applications. Moreover, our photocatalytic results suggest that these materials have high oxidizing capacity that can be used to efficiently produce oxygen cheaply using solar water splitting. We use DFT to study the structural, electronic, optical, photocatalytic, mechanical, vibrational, and thermodynamical behaviors of new double antiperovskite Cs 6 AgBiX 2 (X = Cl, Br, I).
ISSN:2046-2069
DOI:10.1039/d4ra05661b