Loading…

High-flux charge transfer layer confers a solid electrolyte interphase with uniform and rich LiF for stable lithium metal batteries

Lithium (Li) metal batteries are considered one of the most promising electrochemical energy storage systems. However, the uncontrollable solid electrolyte interphase (SEI) and Li deposition lead to poor stability and safety concerns, hindering their wide utilization for energy devices. Herein, we p...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-04, Vol.12 (15), p.9155-9163
Main Authors: Zhao, Haijie, Peng, Yumeng, Liu, Xianbin, Du, Shibo, Yu, Yiyao, Liu, Ting, Yin, Yanhong, Attia, Sayed Y, Li, Yesheng, Wu, Ziping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c240t-a774dc37e0c5b67b4493ad572a70336d14921a8f3ab518b05f4123a5c4bb84763
container_end_page 9163
container_issue 15
container_start_page 9155
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Zhao, Haijie
Peng, Yumeng
Liu, Xianbin
Du, Shibo
Yu, Yiyao
Liu, Ting
Yin, Yanhong
Attia, Sayed Y
Li, Yesheng
Wu, Ziping
description Lithium (Li) metal batteries are considered one of the most promising electrochemical energy storage systems. However, the uncontrollable solid electrolyte interphase (SEI) and Li deposition lead to poor stability and safety concerns, hindering their wide utilization for energy devices. Herein, we propose a high-flux charge transfer layer (HCTL) with efficient mixed electron/ion transport dynamics to achieve a remodeled SEI and highly reversible Li deposition. As a concept, an ultra-thin graphitized reduced graphene oxide/carbon nanotube (GrGO/CNT) film has been designed and fabricated as an HCTL to protect the Li anode. The fabricated GrGO/CNT film exhibits excellent electronic conductivity and ionic diffusivity. As a result, the Li/HCTL electrode based on GrGO/CNT exhibits a prolonged cycling lifespan with a high current density and high areal capacity (2.5 mA cm −2 , 2.5 mA h cm −2 with 2000 cycles). These excellent properties have been proved to benefit the uniform, LiF-rich and strengthened SEI induced by this HCTL. As a result of the synergistic effects of the fast electron/ion transport dynamics and the reformative SEI layer, the assembled Li/HCTL|LiCoO 2 full battery delivers satisfactory cycling stability and high-rate performance. This study presents a fresh strategy to fabricate high-performance Li anodes for stable Li metal batteries. A prepared high-flux charge transfer layer (HCTL) of GrGO/CNT film, with excellent electron/ion kinetic processes, induced a thinner and more uniform LiF-rich SEI. Then Li/HCTL electrode exhibited highly reversible stripping/deposition behaviors.
doi_str_mv 10.1039/d4ta00689e
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d4ta00689e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039145700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-a774dc37e0c5b67b4493ad572a70336d14921a8f3ab518b05f4123a5c4bb84763</originalsourceid><addsrcrecordid>eNpFkd9LwzAQx4soOOZefBcOfBOqSZM27eOYzgkDX-ZzuabpmpG2M0nRPfuPG53Me7hffO4OvhdF15TcU8KKh5p7JCTLC3UWTRKSkljwIjs_5Xl-Gc2c25FgeQCLYhJ9rfS2jRszfoJs0W4VeIu9a5QFg4fg5dCHwgGCG4yuQRklvR3MwSvQvVd236JT8KF9C2Ovm8F2gH0NVssW1noJoQPOY2UUmADpsYNOeTRQoQ_jWrmr6KJB49TsL06jt-XTZrGK16_PL4v5OpYJJz5GIXgtmVBEplUmKs4LhnUqEhSEsaymvEgo5g3DKqV5RdKG04RhKnlV5VxkbBrdHvfu7fA-KufL3TDaPpwsWdCP8lQQEqi7IyXt4JxVTbm3ukN7KCkpf3QuH_lm_qvzU4BvjrB18sT9_4F9Azq7exg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039145700</pqid></control><display><type>article</type><title>High-flux charge transfer layer confers a solid electrolyte interphase with uniform and rich LiF for stable lithium metal batteries</title><source>Royal Society of Chemistry Journals</source><creator>Zhao, Haijie ; Peng, Yumeng ; Liu, Xianbin ; Du, Shibo ; Yu, Yiyao ; Liu, Ting ; Yin, Yanhong ; Attia, Sayed Y ; Li, Yesheng ; Wu, Ziping</creator><creatorcontrib>Zhao, Haijie ; Peng, Yumeng ; Liu, Xianbin ; Du, Shibo ; Yu, Yiyao ; Liu, Ting ; Yin, Yanhong ; Attia, Sayed Y ; Li, Yesheng ; Wu, Ziping</creatorcontrib><description>Lithium (Li) metal batteries are considered one of the most promising electrochemical energy storage systems. However, the uncontrollable solid electrolyte interphase (SEI) and Li deposition lead to poor stability and safety concerns, hindering their wide utilization for energy devices. Herein, we propose a high-flux charge transfer layer (HCTL) with efficient mixed electron/ion transport dynamics to achieve a remodeled SEI and highly reversible Li deposition. As a concept, an ultra-thin graphitized reduced graphene oxide/carbon nanotube (GrGO/CNT) film has been designed and fabricated as an HCTL to protect the Li anode. The fabricated GrGO/CNT film exhibits excellent electronic conductivity and ionic diffusivity. As a result, the Li/HCTL electrode based on GrGO/CNT exhibits a prolonged cycling lifespan with a high current density and high areal capacity (2.5 mA cm −2 , 2.5 mA h cm −2 with 2000 cycles). These excellent properties have been proved to benefit the uniform, LiF-rich and strengthened SEI induced by this HCTL. As a result of the synergistic effects of the fast electron/ion transport dynamics and the reformative SEI layer, the assembled Li/HCTL|LiCoO 2 full battery delivers satisfactory cycling stability and high-rate performance. This study presents a fresh strategy to fabricate high-performance Li anodes for stable Li metal batteries. A prepared high-flux charge transfer layer (HCTL) of GrGO/CNT film, with excellent electron/ion kinetic processes, induced a thinner and more uniform LiF-rich SEI. Then Li/HCTL electrode exhibited highly reversible stripping/deposition behaviors.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta00689e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Anodic protection ; Batteries ; Carbon nanotubes ; Charge transfer ; Current density ; Deposition ; Electrochemistry ; Electrolytes ; Energy storage ; Graphene ; Graphitization ; Heavy metals ; Interphase ; Ion transport ; Life span ; Lithium ; Lithium batteries ; Lithium fluoride ; Solid electrolytes ; Stability ; Storage systems ; Synergistic effect</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-04, Vol.12 (15), p.9155-9163</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-a774dc37e0c5b67b4493ad572a70336d14921a8f3ab518b05f4123a5c4bb84763</cites><orcidid>0000-0001-8308-7313 ; 0000-0001-8441-4435 ; 0000-0003-4701-121X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhao, Haijie</creatorcontrib><creatorcontrib>Peng, Yumeng</creatorcontrib><creatorcontrib>Liu, Xianbin</creatorcontrib><creatorcontrib>Du, Shibo</creatorcontrib><creatorcontrib>Yu, Yiyao</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Yin, Yanhong</creatorcontrib><creatorcontrib>Attia, Sayed Y</creatorcontrib><creatorcontrib>Li, Yesheng</creatorcontrib><creatorcontrib>Wu, Ziping</creatorcontrib><title>High-flux charge transfer layer confers a solid electrolyte interphase with uniform and rich LiF for stable lithium metal batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Lithium (Li) metal batteries are considered one of the most promising electrochemical energy storage systems. However, the uncontrollable solid electrolyte interphase (SEI) and Li deposition lead to poor stability and safety concerns, hindering their wide utilization for energy devices. Herein, we propose a high-flux charge transfer layer (HCTL) with efficient mixed electron/ion transport dynamics to achieve a remodeled SEI and highly reversible Li deposition. As a concept, an ultra-thin graphitized reduced graphene oxide/carbon nanotube (GrGO/CNT) film has been designed and fabricated as an HCTL to protect the Li anode. The fabricated GrGO/CNT film exhibits excellent electronic conductivity and ionic diffusivity. As a result, the Li/HCTL electrode based on GrGO/CNT exhibits a prolonged cycling lifespan with a high current density and high areal capacity (2.5 mA cm −2 , 2.5 mA h cm −2 with 2000 cycles). These excellent properties have been proved to benefit the uniform, LiF-rich and strengthened SEI induced by this HCTL. As a result of the synergistic effects of the fast electron/ion transport dynamics and the reformative SEI layer, the assembled Li/HCTL|LiCoO 2 full battery delivers satisfactory cycling stability and high-rate performance. This study presents a fresh strategy to fabricate high-performance Li anodes for stable Li metal batteries. A prepared high-flux charge transfer layer (HCTL) of GrGO/CNT film, with excellent electron/ion kinetic processes, induced a thinner and more uniform LiF-rich SEI. Then Li/HCTL electrode exhibited highly reversible stripping/deposition behaviors.</description><subject>Anodes</subject><subject>Anodic protection</subject><subject>Batteries</subject><subject>Carbon nanotubes</subject><subject>Charge transfer</subject><subject>Current density</subject><subject>Deposition</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>Graphitization</subject><subject>Heavy metals</subject><subject>Interphase</subject><subject>Ion transport</subject><subject>Life span</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium fluoride</subject><subject>Solid electrolytes</subject><subject>Stability</subject><subject>Storage systems</subject><subject>Synergistic effect</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkd9LwzAQx4soOOZefBcOfBOqSZM27eOYzgkDX-ZzuabpmpG2M0nRPfuPG53Me7hffO4OvhdF15TcU8KKh5p7JCTLC3UWTRKSkljwIjs_5Xl-Gc2c25FgeQCLYhJ9rfS2jRszfoJs0W4VeIu9a5QFg4fg5dCHwgGCG4yuQRklvR3MwSvQvVd236JT8KF9C2Ovm8F2gH0NVssW1noJoQPOY2UUmADpsYNOeTRQoQ_jWrmr6KJB49TsL06jt-XTZrGK16_PL4v5OpYJJz5GIXgtmVBEplUmKs4LhnUqEhSEsaymvEgo5g3DKqV5RdKG04RhKnlV5VxkbBrdHvfu7fA-KufL3TDaPpwsWdCP8lQQEqi7IyXt4JxVTbm3ukN7KCkpf3QuH_lm_qvzU4BvjrB18sT9_4F9Azq7exg</recordid><startdate>20240416</startdate><enddate>20240416</enddate><creator>Zhao, Haijie</creator><creator>Peng, Yumeng</creator><creator>Liu, Xianbin</creator><creator>Du, Shibo</creator><creator>Yu, Yiyao</creator><creator>Liu, Ting</creator><creator>Yin, Yanhong</creator><creator>Attia, Sayed Y</creator><creator>Li, Yesheng</creator><creator>Wu, Ziping</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8308-7313</orcidid><orcidid>https://orcid.org/0000-0001-8441-4435</orcidid><orcidid>https://orcid.org/0000-0003-4701-121X</orcidid></search><sort><creationdate>20240416</creationdate><title>High-flux charge transfer layer confers a solid electrolyte interphase with uniform and rich LiF for stable lithium metal batteries</title><author>Zhao, Haijie ; Peng, Yumeng ; Liu, Xianbin ; Du, Shibo ; Yu, Yiyao ; Liu, Ting ; Yin, Yanhong ; Attia, Sayed Y ; Li, Yesheng ; Wu, Ziping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-a774dc37e0c5b67b4493ad572a70336d14921a8f3ab518b05f4123a5c4bb84763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodes</topic><topic>Anodic protection</topic><topic>Batteries</topic><topic>Carbon nanotubes</topic><topic>Charge transfer</topic><topic>Current density</topic><topic>Deposition</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>Graphitization</topic><topic>Heavy metals</topic><topic>Interphase</topic><topic>Ion transport</topic><topic>Life span</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium fluoride</topic><topic>Solid electrolytes</topic><topic>Stability</topic><topic>Storage systems</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Haijie</creatorcontrib><creatorcontrib>Peng, Yumeng</creatorcontrib><creatorcontrib>Liu, Xianbin</creatorcontrib><creatorcontrib>Du, Shibo</creatorcontrib><creatorcontrib>Yu, Yiyao</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Yin, Yanhong</creatorcontrib><creatorcontrib>Attia, Sayed Y</creatorcontrib><creatorcontrib>Li, Yesheng</creatorcontrib><creatorcontrib>Wu, Ziping</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Haijie</au><au>Peng, Yumeng</au><au>Liu, Xianbin</au><au>Du, Shibo</au><au>Yu, Yiyao</au><au>Liu, Ting</au><au>Yin, Yanhong</au><au>Attia, Sayed Y</au><au>Li, Yesheng</au><au>Wu, Ziping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-flux charge transfer layer confers a solid electrolyte interphase with uniform and rich LiF for stable lithium metal batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-04-16</date><risdate>2024</risdate><volume>12</volume><issue>15</issue><spage>9155</spage><epage>9163</epage><pages>9155-9163</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Lithium (Li) metal batteries are considered one of the most promising electrochemical energy storage systems. However, the uncontrollable solid electrolyte interphase (SEI) and Li deposition lead to poor stability and safety concerns, hindering their wide utilization for energy devices. Herein, we propose a high-flux charge transfer layer (HCTL) with efficient mixed electron/ion transport dynamics to achieve a remodeled SEI and highly reversible Li deposition. As a concept, an ultra-thin graphitized reduced graphene oxide/carbon nanotube (GrGO/CNT) film has been designed and fabricated as an HCTL to protect the Li anode. The fabricated GrGO/CNT film exhibits excellent electronic conductivity and ionic diffusivity. As a result, the Li/HCTL electrode based on GrGO/CNT exhibits a prolonged cycling lifespan with a high current density and high areal capacity (2.5 mA cm −2 , 2.5 mA h cm −2 with 2000 cycles). These excellent properties have been proved to benefit the uniform, LiF-rich and strengthened SEI induced by this HCTL. As a result of the synergistic effects of the fast electron/ion transport dynamics and the reformative SEI layer, the assembled Li/HCTL|LiCoO 2 full battery delivers satisfactory cycling stability and high-rate performance. This study presents a fresh strategy to fabricate high-performance Li anodes for stable Li metal batteries. A prepared high-flux charge transfer layer (HCTL) of GrGO/CNT film, with excellent electron/ion kinetic processes, induced a thinner and more uniform LiF-rich SEI. Then Li/HCTL electrode exhibited highly reversible stripping/deposition behaviors.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta00689e</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8308-7313</orcidid><orcidid>https://orcid.org/0000-0001-8441-4435</orcidid><orcidid>https://orcid.org/0000-0003-4701-121X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-04, Vol.12 (15), p.9155-9163
issn 2050-7488
2050-7496
language eng
recordid cdi_rsc_primary_d4ta00689e
source Royal Society of Chemistry Journals
subjects Anodes
Anodic protection
Batteries
Carbon nanotubes
Charge transfer
Current density
Deposition
Electrochemistry
Electrolytes
Energy storage
Graphene
Graphitization
Heavy metals
Interphase
Ion transport
Life span
Lithium
Lithium batteries
Lithium fluoride
Solid electrolytes
Stability
Storage systems
Synergistic effect
title High-flux charge transfer layer confers a solid electrolyte interphase with uniform and rich LiF for stable lithium metal batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-flux%20charge%20transfer%20layer%20confers%20a%20solid%20electrolyte%20interphase%20with%20uniform%20and%20rich%20LiF%20for%20stable%20lithium%20metal%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Zhao,%20Haijie&rft.date=2024-04-16&rft.volume=12&rft.issue=15&rft.spage=9155&rft.epage=9163&rft.pages=9155-9163&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta00689e&rft_dat=%3Cproquest_rsc_p%3E3039145700%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c240t-a774dc37e0c5b67b4493ad572a70336d14921a8f3ab518b05f4123a5c4bb84763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3039145700&rft_id=info:pmid/&rfr_iscdi=true