Loading…

Minimizing ion/electron pathways through ultrathin conformal holey graphene encapsulation in Li- and Mn-rich layered oxide cathodes for high-performance lithium-ion batteries

Graphene encapsulation offers dual benefits of improving the rate capability and cycle stability of lithium- and manganese-rich (LMR) cathode materials in lithium-ion batteries (LIBs). However, conventional graphene wrapping tends to impede lithium ion transport to the cathode particle surface owing...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-07, Vol.12 (26), p.16143-16159
Main Authors: Kim, Sungwook, Hwang, Jeonguk, Jo, Youngseok, Park, Changyong, Bansal, Neetu, Salunkhe, Rahul R, Ahn, Heejoon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c170t-8104f05964abe22f8aa2d0e3061d62fef581e1e54dc968dafc139e0c861eb0b13
container_end_page 16159
container_issue 26
container_start_page 16143
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Kim, Sungwook
Hwang, Jeonguk
Jo, Youngseok
Park, Changyong
Bansal, Neetu
Salunkhe, Rahul R
Ahn, Heejoon
description Graphene encapsulation offers dual benefits of improving the rate capability and cycle stability of lithium- and manganese-rich (LMR) cathode materials in lithium-ion batteries (LIBs). However, conventional graphene wrapping tends to impede lithium ion transport to the cathode particle surface owing to ion migration along the edges of the graphene sheets, thereby limiting the improvement in rate performance. To address this challenge, we developed an innovative ultra-thin conformal holey graphene encapsulation technology for LMR cathodes. This technique involves a two-step coating process utilizing polyethylenimine (PEI) for surface charge control, followed by spontaneous aggregation with holey graphene to create lithium-ion transport channels. The resulting thin (3-5 nm) and uniform coating layer, with minimal carbon content (0.1 wt%), significantly enhances the rate capability by promoting rapid electron movement and lithium-ion diffusion. Additionally, holey graphene encapsulation provides physical protection, addressing issues like micro-crack formation and irreversible phase transitions, thereby improving cycle stability. The performance of the PEI/holey graphene-encapsulated LMR cathode surpassed that of the bare LMR cathode, demonstrating superior capacity retention (87.8% over 100 cycles at 1C), enhanced rate performance (77.8 mA h g −1 at 10C), and improved energy density retention in full-cell tests (72.7% over 300 cycles at 1C). PEI/holey graphene encapsulation applied thinly and uniformly to LMR cathode surfaces enhances electrical conductivity, facilitates lithium-ion diffusion, and acts as a protective layer, demonstrating excellent electrochemical performance.
doi_str_mv 10.1039/d4ta02000f
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d4ta02000f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3074553283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-8104f05964abe22f8aa2d0e3061d62fef581e1e54dc968dafc139e0c861eb0b13</originalsourceid><addsrcrecordid>eNpFkctKBDEQRRtRUNSNe6HAndBa6dekl-IbRtzouskklelIT9ImaXT8KL_R6Iiu6lIczl3cLDtieMawbM9VFQUWiKi3sr0Ca8xnVdts_2XOd7PDEF4SgRyxadu97PPBWLMyH8YuwTh7TgPJ6J2FUcT-TawDxN67adnDNESffsaCdFY7vxID9G6gNSy9GHuyBGSlGMM0iJhUkMi5yUFYBQ8290b2MIg1eVLg3o0ikEnnFAVINujNss9H8j9mKwkGk8qmVf6tWogYyRsKB9mOFkOgw9-7nz3fXD9d3uXzx9v7y4t5LtkMY84ZVhrrtqnEgopCcyEKhVRiw1RTaNI1Z8SorpRsG66ElqxsCSVvGC1wwcr97GTjHb17nSjE7sVN3qbKrsRZVddlwctEnW4o6V0InnQ3erMSft0x7L4n6a6qp4ufSW4SfLyBfZB_3P9k5RdGX4zQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074553283</pqid></control><display><type>article</type><title>Minimizing ion/electron pathways through ultrathin conformal holey graphene encapsulation in Li- and Mn-rich layered oxide cathodes for high-performance lithium-ion batteries</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Kim, Sungwook ; Hwang, Jeonguk ; Jo, Youngseok ; Park, Changyong ; Bansal, Neetu ; Salunkhe, Rahul R ; Ahn, Heejoon</creator><creatorcontrib>Kim, Sungwook ; Hwang, Jeonguk ; Jo, Youngseok ; Park, Changyong ; Bansal, Neetu ; Salunkhe, Rahul R ; Ahn, Heejoon</creatorcontrib><description>Graphene encapsulation offers dual benefits of improving the rate capability and cycle stability of lithium- and manganese-rich (LMR) cathode materials in lithium-ion batteries (LIBs). However, conventional graphene wrapping tends to impede lithium ion transport to the cathode particle surface owing to ion migration along the edges of the graphene sheets, thereby limiting the improvement in rate performance. To address this challenge, we developed an innovative ultra-thin conformal holey graphene encapsulation technology for LMR cathodes. This technique involves a two-step coating process utilizing polyethylenimine (PEI) for surface charge control, followed by spontaneous aggregation with holey graphene to create lithium-ion transport channels. The resulting thin (3-5 nm) and uniform coating layer, with minimal carbon content (0.1 wt%), significantly enhances the rate capability by promoting rapid electron movement and lithium-ion diffusion. Additionally, holey graphene encapsulation provides physical protection, addressing issues like micro-crack formation and irreversible phase transitions, thereby improving cycle stability. The performance of the PEI/holey graphene-encapsulated LMR cathode surpassed that of the bare LMR cathode, demonstrating superior capacity retention (87.8% over 100 cycles at 1C), enhanced rate performance (77.8 mA h g −1 at 10C), and improved energy density retention in full-cell tests (72.7% over 300 cycles at 1C). PEI/holey graphene encapsulation applied thinly and uniformly to LMR cathode surfaces enhances electrical conductivity, facilitates lithium-ion diffusion, and acts as a protective layer, demonstrating excellent electrochemical performance.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta02000f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon content ; Cathodes ; Diffusion rate ; Electrode materials ; Encapsulation ; Graphene ; Ion diffusion ; Ion migration ; Ion transport ; Lithium ; Lithium-ion batteries ; Manganese ; Microcracks ; Phase transitions ; Polyethyleneimine ; Rechargeable batteries ; Retention ; Stability ; Surface charge</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-07, Vol.12 (26), p.16143-16159</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-8104f05964abe22f8aa2d0e3061d62fef581e1e54dc968dafc139e0c861eb0b13</cites><orcidid>0000-0002-3322-6423 ; 0000-0001-7629-8833 ; 0009-0006-9017-2923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Sungwook</creatorcontrib><creatorcontrib>Hwang, Jeonguk</creatorcontrib><creatorcontrib>Jo, Youngseok</creatorcontrib><creatorcontrib>Park, Changyong</creatorcontrib><creatorcontrib>Bansal, Neetu</creatorcontrib><creatorcontrib>Salunkhe, Rahul R</creatorcontrib><creatorcontrib>Ahn, Heejoon</creatorcontrib><title>Minimizing ion/electron pathways through ultrathin conformal holey graphene encapsulation in Li- and Mn-rich layered oxide cathodes for high-performance lithium-ion batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Graphene encapsulation offers dual benefits of improving the rate capability and cycle stability of lithium- and manganese-rich (LMR) cathode materials in lithium-ion batteries (LIBs). However, conventional graphene wrapping tends to impede lithium ion transport to the cathode particle surface owing to ion migration along the edges of the graphene sheets, thereby limiting the improvement in rate performance. To address this challenge, we developed an innovative ultra-thin conformal holey graphene encapsulation technology for LMR cathodes. This technique involves a two-step coating process utilizing polyethylenimine (PEI) for surface charge control, followed by spontaneous aggregation with holey graphene to create lithium-ion transport channels. The resulting thin (3-5 nm) and uniform coating layer, with minimal carbon content (0.1 wt%), significantly enhances the rate capability by promoting rapid electron movement and lithium-ion diffusion. Additionally, holey graphene encapsulation provides physical protection, addressing issues like micro-crack formation and irreversible phase transitions, thereby improving cycle stability. The performance of the PEI/holey graphene-encapsulated LMR cathode surpassed that of the bare LMR cathode, demonstrating superior capacity retention (87.8% over 100 cycles at 1C), enhanced rate performance (77.8 mA h g −1 at 10C), and improved energy density retention in full-cell tests (72.7% over 300 cycles at 1C). PEI/holey graphene encapsulation applied thinly and uniformly to LMR cathode surfaces enhances electrical conductivity, facilitates lithium-ion diffusion, and acts as a protective layer, demonstrating excellent electrochemical performance.</description><subject>Carbon content</subject><subject>Cathodes</subject><subject>Diffusion rate</subject><subject>Electrode materials</subject><subject>Encapsulation</subject><subject>Graphene</subject><subject>Ion diffusion</subject><subject>Ion migration</subject><subject>Ion transport</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Manganese</subject><subject>Microcracks</subject><subject>Phase transitions</subject><subject>Polyethyleneimine</subject><subject>Rechargeable batteries</subject><subject>Retention</subject><subject>Stability</subject><subject>Surface charge</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkctKBDEQRRtRUNSNe6HAndBa6dekl-IbRtzouskklelIT9ImaXT8KL_R6Iiu6lIczl3cLDtieMawbM9VFQUWiKi3sr0Ca8xnVdts_2XOd7PDEF4SgRyxadu97PPBWLMyH8YuwTh7TgPJ6J2FUcT-TawDxN67adnDNESffsaCdFY7vxID9G6gNSy9GHuyBGSlGMM0iJhUkMi5yUFYBQ8290b2MIg1eVLg3o0ikEnnFAVINujNss9H8j9mKwkGk8qmVf6tWogYyRsKB9mOFkOgw9-7nz3fXD9d3uXzx9v7y4t5LtkMY84ZVhrrtqnEgopCcyEKhVRiw1RTaNI1Z8SorpRsG66ElqxsCSVvGC1wwcr97GTjHb17nSjE7sVN3qbKrsRZVddlwctEnW4o6V0InnQ3erMSft0x7L4n6a6qp4ufSW4SfLyBfZB_3P9k5RdGX4zQ</recordid><startdate>20240702</startdate><enddate>20240702</enddate><creator>Kim, Sungwook</creator><creator>Hwang, Jeonguk</creator><creator>Jo, Youngseok</creator><creator>Park, Changyong</creator><creator>Bansal, Neetu</creator><creator>Salunkhe, Rahul R</creator><creator>Ahn, Heejoon</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-3322-6423</orcidid><orcidid>https://orcid.org/0000-0001-7629-8833</orcidid><orcidid>https://orcid.org/0009-0006-9017-2923</orcidid></search><sort><creationdate>20240702</creationdate><title>Minimizing ion/electron pathways through ultrathin conformal holey graphene encapsulation in Li- and Mn-rich layered oxide cathodes for high-performance lithium-ion batteries</title><author>Kim, Sungwook ; Hwang, Jeonguk ; Jo, Youngseok ; Park, Changyong ; Bansal, Neetu ; Salunkhe, Rahul R ; Ahn, Heejoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-8104f05964abe22f8aa2d0e3061d62fef581e1e54dc968dafc139e0c861eb0b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon content</topic><topic>Cathodes</topic><topic>Diffusion rate</topic><topic>Electrode materials</topic><topic>Encapsulation</topic><topic>Graphene</topic><topic>Ion diffusion</topic><topic>Ion migration</topic><topic>Ion transport</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Manganese</topic><topic>Microcracks</topic><topic>Phase transitions</topic><topic>Polyethyleneimine</topic><topic>Rechargeable batteries</topic><topic>Retention</topic><topic>Stability</topic><topic>Surface charge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sungwook</creatorcontrib><creatorcontrib>Hwang, Jeonguk</creatorcontrib><creatorcontrib>Jo, Youngseok</creatorcontrib><creatorcontrib>Park, Changyong</creatorcontrib><creatorcontrib>Bansal, Neetu</creatorcontrib><creatorcontrib>Salunkhe, Rahul R</creatorcontrib><creatorcontrib>Ahn, Heejoon</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sungwook</au><au>Hwang, Jeonguk</au><au>Jo, Youngseok</au><au>Park, Changyong</au><au>Bansal, Neetu</au><au>Salunkhe, Rahul R</au><au>Ahn, Heejoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimizing ion/electron pathways through ultrathin conformal holey graphene encapsulation in Li- and Mn-rich layered oxide cathodes for high-performance lithium-ion batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-07-02</date><risdate>2024</risdate><volume>12</volume><issue>26</issue><spage>16143</spage><epage>16159</epage><pages>16143-16159</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Graphene encapsulation offers dual benefits of improving the rate capability and cycle stability of lithium- and manganese-rich (LMR) cathode materials in lithium-ion batteries (LIBs). However, conventional graphene wrapping tends to impede lithium ion transport to the cathode particle surface owing to ion migration along the edges of the graphene sheets, thereby limiting the improvement in rate performance. To address this challenge, we developed an innovative ultra-thin conformal holey graphene encapsulation technology for LMR cathodes. This technique involves a two-step coating process utilizing polyethylenimine (PEI) for surface charge control, followed by spontaneous aggregation with holey graphene to create lithium-ion transport channels. The resulting thin (3-5 nm) and uniform coating layer, with minimal carbon content (0.1 wt%), significantly enhances the rate capability by promoting rapid electron movement and lithium-ion diffusion. Additionally, holey graphene encapsulation provides physical protection, addressing issues like micro-crack formation and irreversible phase transitions, thereby improving cycle stability. The performance of the PEI/holey graphene-encapsulated LMR cathode surpassed that of the bare LMR cathode, demonstrating superior capacity retention (87.8% over 100 cycles at 1C), enhanced rate performance (77.8 mA h g −1 at 10C), and improved energy density retention in full-cell tests (72.7% over 300 cycles at 1C). PEI/holey graphene encapsulation applied thinly and uniformly to LMR cathode surfaces enhances electrical conductivity, facilitates lithium-ion diffusion, and acts as a protective layer, demonstrating excellent electrochemical performance.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta02000f</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3322-6423</orcidid><orcidid>https://orcid.org/0000-0001-7629-8833</orcidid><orcidid>https://orcid.org/0009-0006-9017-2923</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-07, Vol.12 (26), p.16143-16159
issn 2050-7488
2050-7496
language eng
recordid cdi_rsc_primary_d4ta02000f
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Carbon content
Cathodes
Diffusion rate
Electrode materials
Encapsulation
Graphene
Ion diffusion
Ion migration
Ion transport
Lithium
Lithium-ion batteries
Manganese
Microcracks
Phase transitions
Polyethyleneimine
Rechargeable batteries
Retention
Stability
Surface charge
title Minimizing ion/electron pathways through ultrathin conformal holey graphene encapsulation in Li- and Mn-rich layered oxide cathodes for high-performance lithium-ion batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A34%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimizing%20ion/electron%20pathways%20through%20ultrathin%20conformal%20holey%20graphene%20encapsulation%20in%20Li-%20and%20Mn-rich%20layered%20oxide%20cathodes%20for%20high-performance%20lithium-ion%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Kim,%20Sungwook&rft.date=2024-07-02&rft.volume=12&rft.issue=26&rft.spage=16143&rft.epage=16159&rft.pages=16143-16159&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta02000f&rft_dat=%3Cproquest_rsc_p%3E3074553283%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c170t-8104f05964abe22f8aa2d0e3061d62fef581e1e54dc968dafc139e0c861eb0b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3074553283&rft_id=info:pmid/&rfr_iscdi=true