Loading…

A phthalocyanine-based polycrystalline interlayer simultaneously realizing charge collection and ion defect passivation for perovskite solar cells

In the quest for sustainable energy solutions, perovskite solar cells have emerged as a promising avenue due to their remarkable efficiency and cost-effectiveness. However, their widespread adoption is hampered by performance degradation issues primarily attributed to ion migration and vacancy forma...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-08, Vol.12 (34), p.2251-22515
Main Authors: Ohsawa, Tatsuya, Shibayama, Naoyuki, Nakamura, Nobuhiro, Tamura, Shigeto, Hayakawa, Ai, Murayama, Yohei, Makisumi, Kohei, Kitahara, Michitaka, Takayama, Mizuki, Matsui, Takashi, Okuda, Atsushi, Nakamura, Yuiga, Ikegami, Masashi, Miyasaka, Tsutomu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c170t-608fd982c41a0fa5c00b83caa80783bdf698a60052b8ea680cdf0f21fe3d26a63
container_end_page 22515
container_issue 34
container_start_page 2251
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Ohsawa, Tatsuya
Shibayama, Naoyuki
Nakamura, Nobuhiro
Tamura, Shigeto
Hayakawa, Ai
Murayama, Yohei
Makisumi, Kohei
Kitahara, Michitaka
Takayama, Mizuki
Matsui, Takashi
Okuda, Atsushi
Nakamura, Yuiga
Ikegami, Masashi
Miyasaka, Tsutomu
description In the quest for sustainable energy solutions, perovskite solar cells have emerged as a promising avenue due to their remarkable efficiency and cost-effectiveness. However, their widespread adoption is hampered by performance degradation issues primarily attributed to ion migration and vacancy formation within halide perovskite films. To mitigate the impact of ion defects, a passivation layer, which typically acts as a barrier for carriers, is employed. Nonetheless, the requirement for extreme thinness to avoid increasing series resistance complicates the manufacturing process. In this study, we introduced gallium phthalocyanine hydroxide (OHGaPc), a p-type organic semiconductor with Lewis base functionality, as a passivation layer to mitigate performance degradation in perovskite solar cells. We demonstrated that this material passivates halide vacancies by being a Lewis base and promotes efficient charge transport as a p-type semiconductor. This dual functionality of OHGaPc not only enhances the stability and performance of perovskite solar cells but also simplifies the manufacturing process by obviating the need for ultra-thin insulating films. Our findings underscore the significance of leveraging the properties of Lewis bases and p-type semiconductors in improving charge extraction and overall cell efficiency, setting a new direction in the development of durable and efficient perovskite solar cells. Perovskite solar cells are efficient and cost-effective but have issues with ion migration from light irradiation. This study uses OHGaPc as a passivation layer to improve light stability and charge transport, increasing efficiency.
doi_str_mv 10.1039/d4ta02491e
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d4ta02491e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097460726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-608fd982c41a0fa5c00b83caa80783bdf698a60052b8ea680cdf0f21fe3d26a63</originalsourceid><addsrcrecordid>eNpFkU1LAzEQhhdRsGgv3oWAN2F19qPZ7LHU-gEFL_W8TLOTNjXdrElaWH-Gv9htK3Uu7_DOwwy8E0U3CTwkkJWPdR4Q0rxM6CwapDCCuMhLfn7qhbiMht6voS8BwMtyEP2MWbsKKzRWdtjohuIFeqpZa00nXecDGtO7TDeBnMGOHPN6szUBG7JbbzrmCI3-1s2SyRW6JTFpjSEZtG0YNjXba02qd1iL3usdHkbKOtaSszv_qQMxbw06JskYfx1dKDSehn96FX08T-eT13j2_vI2Gc9imRQQYg5C1aVIZZ4gKBxJgIXIJKKAQmSLWvFSIAcYpQtByAXIWoFKE0VZnXLk2VV0d9zbOvu1JR-qtd26pj9ZZVAWOYci3VP3R0o6670jVbVOb9B1VQLVPvbqKZ-PD7FPe_j2CDsvT9z_W7JfpK2Dng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097460726</pqid></control><display><type>article</type><title>A phthalocyanine-based polycrystalline interlayer simultaneously realizing charge collection and ion defect passivation for perovskite solar cells</title><source>Royal Society of Chemistry Journals</source><creator>Ohsawa, Tatsuya ; Shibayama, Naoyuki ; Nakamura, Nobuhiro ; Tamura, Shigeto ; Hayakawa, Ai ; Murayama, Yohei ; Makisumi, Kohei ; Kitahara, Michitaka ; Takayama, Mizuki ; Matsui, Takashi ; Okuda, Atsushi ; Nakamura, Yuiga ; Ikegami, Masashi ; Miyasaka, Tsutomu</creator><creatorcontrib>Ohsawa, Tatsuya ; Shibayama, Naoyuki ; Nakamura, Nobuhiro ; Tamura, Shigeto ; Hayakawa, Ai ; Murayama, Yohei ; Makisumi, Kohei ; Kitahara, Michitaka ; Takayama, Mizuki ; Matsui, Takashi ; Okuda, Atsushi ; Nakamura, Yuiga ; Ikegami, Masashi ; Miyasaka, Tsutomu</creatorcontrib><description>In the quest for sustainable energy solutions, perovskite solar cells have emerged as a promising avenue due to their remarkable efficiency and cost-effectiveness. However, their widespread adoption is hampered by performance degradation issues primarily attributed to ion migration and vacancy formation within halide perovskite films. To mitigate the impact of ion defects, a passivation layer, which typically acts as a barrier for carriers, is employed. Nonetheless, the requirement for extreme thinness to avoid increasing series resistance complicates the manufacturing process. In this study, we introduced gallium phthalocyanine hydroxide (OHGaPc), a p-type organic semiconductor with Lewis base functionality, as a passivation layer to mitigate performance degradation in perovskite solar cells. We demonstrated that this material passivates halide vacancies by being a Lewis base and promotes efficient charge transport as a p-type semiconductor. This dual functionality of OHGaPc not only enhances the stability and performance of perovskite solar cells but also simplifies the manufacturing process by obviating the need for ultra-thin insulating films. Our findings underscore the significance of leveraging the properties of Lewis bases and p-type semiconductors in improving charge extraction and overall cell efficiency, setting a new direction in the development of durable and efficient perovskite solar cells. Perovskite solar cells are efficient and cost-effective but have issues with ion migration from light irradiation. This study uses OHGaPc as a passivation layer to improve light stability and charge transport, increasing efficiency.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta02491e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Cell migration ; Charge efficiency ; Charge materials ; Charge transport ; Cost effectiveness ; Defects ; Energy charge ; Gallium ; Interlayers ; Ion migration ; Lewis base ; Manufacturing ; Manufacturing industry ; P-type semiconductors ; Passivity ; Performance degradation ; Perovskites ; Photovoltaic cells ; Solar cells ; Solar energy ; Sustainable energy ; Thin films</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-08, Vol.12 (34), p.2251-22515</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-608fd982c41a0fa5c00b83caa80783bdf698a60052b8ea680cdf0f21fe3d26a63</cites><orcidid>0000-0003-2182-049X ; 0000-0001-8535-7911 ; 0000-0003-3696-0997 ; 0000-0003-4735-9152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ohsawa, Tatsuya</creatorcontrib><creatorcontrib>Shibayama, Naoyuki</creatorcontrib><creatorcontrib>Nakamura, Nobuhiro</creatorcontrib><creatorcontrib>Tamura, Shigeto</creatorcontrib><creatorcontrib>Hayakawa, Ai</creatorcontrib><creatorcontrib>Murayama, Yohei</creatorcontrib><creatorcontrib>Makisumi, Kohei</creatorcontrib><creatorcontrib>Kitahara, Michitaka</creatorcontrib><creatorcontrib>Takayama, Mizuki</creatorcontrib><creatorcontrib>Matsui, Takashi</creatorcontrib><creatorcontrib>Okuda, Atsushi</creatorcontrib><creatorcontrib>Nakamura, Yuiga</creatorcontrib><creatorcontrib>Ikegami, Masashi</creatorcontrib><creatorcontrib>Miyasaka, Tsutomu</creatorcontrib><title>A phthalocyanine-based polycrystalline interlayer simultaneously realizing charge collection and ion defect passivation for perovskite solar cells</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>In the quest for sustainable energy solutions, perovskite solar cells have emerged as a promising avenue due to their remarkable efficiency and cost-effectiveness. However, their widespread adoption is hampered by performance degradation issues primarily attributed to ion migration and vacancy formation within halide perovskite films. To mitigate the impact of ion defects, a passivation layer, which typically acts as a barrier for carriers, is employed. Nonetheless, the requirement for extreme thinness to avoid increasing series resistance complicates the manufacturing process. In this study, we introduced gallium phthalocyanine hydroxide (OHGaPc), a p-type organic semiconductor with Lewis base functionality, as a passivation layer to mitigate performance degradation in perovskite solar cells. We demonstrated that this material passivates halide vacancies by being a Lewis base and promotes efficient charge transport as a p-type semiconductor. This dual functionality of OHGaPc not only enhances the stability and performance of perovskite solar cells but also simplifies the manufacturing process by obviating the need for ultra-thin insulating films. Our findings underscore the significance of leveraging the properties of Lewis bases and p-type semiconductors in improving charge extraction and overall cell efficiency, setting a new direction in the development of durable and efficient perovskite solar cells. Perovskite solar cells are efficient and cost-effective but have issues with ion migration from light irradiation. This study uses OHGaPc as a passivation layer to improve light stability and charge transport, increasing efficiency.</description><subject>Cell migration</subject><subject>Charge efficiency</subject><subject>Charge materials</subject><subject>Charge transport</subject><subject>Cost effectiveness</subject><subject>Defects</subject><subject>Energy charge</subject><subject>Gallium</subject><subject>Interlayers</subject><subject>Ion migration</subject><subject>Lewis base</subject><subject>Manufacturing</subject><subject>Manufacturing industry</subject><subject>P-type semiconductors</subject><subject>Passivity</subject><subject>Performance degradation</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Sustainable energy</subject><subject>Thin films</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkU1LAzEQhhdRsGgv3oWAN2F19qPZ7LHU-gEFL_W8TLOTNjXdrElaWH-Gv9htK3Uu7_DOwwy8E0U3CTwkkJWPdR4Q0rxM6CwapDCCuMhLfn7qhbiMht6voS8BwMtyEP2MWbsKKzRWdtjohuIFeqpZa00nXecDGtO7TDeBnMGOHPN6szUBG7JbbzrmCI3-1s2SyRW6JTFpjSEZtG0YNjXba02qd1iL3usdHkbKOtaSszv_qQMxbw06JskYfx1dKDSehn96FX08T-eT13j2_vI2Gc9imRQQYg5C1aVIZZ4gKBxJgIXIJKKAQmSLWvFSIAcYpQtByAXIWoFKE0VZnXLk2VV0d9zbOvu1JR-qtd26pj9ZZVAWOYci3VP3R0o6670jVbVOb9B1VQLVPvbqKZ-PD7FPe_j2CDsvT9z_W7JfpK2Dng</recordid><startdate>20240827</startdate><enddate>20240827</enddate><creator>Ohsawa, Tatsuya</creator><creator>Shibayama, Naoyuki</creator><creator>Nakamura, Nobuhiro</creator><creator>Tamura, Shigeto</creator><creator>Hayakawa, Ai</creator><creator>Murayama, Yohei</creator><creator>Makisumi, Kohei</creator><creator>Kitahara, Michitaka</creator><creator>Takayama, Mizuki</creator><creator>Matsui, Takashi</creator><creator>Okuda, Atsushi</creator><creator>Nakamura, Yuiga</creator><creator>Ikegami, Masashi</creator><creator>Miyasaka, Tsutomu</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2182-049X</orcidid><orcidid>https://orcid.org/0000-0001-8535-7911</orcidid><orcidid>https://orcid.org/0000-0003-3696-0997</orcidid><orcidid>https://orcid.org/0000-0003-4735-9152</orcidid></search><sort><creationdate>20240827</creationdate><title>A phthalocyanine-based polycrystalline interlayer simultaneously realizing charge collection and ion defect passivation for perovskite solar cells</title><author>Ohsawa, Tatsuya ; Shibayama, Naoyuki ; Nakamura, Nobuhiro ; Tamura, Shigeto ; Hayakawa, Ai ; Murayama, Yohei ; Makisumi, Kohei ; Kitahara, Michitaka ; Takayama, Mizuki ; Matsui, Takashi ; Okuda, Atsushi ; Nakamura, Yuiga ; Ikegami, Masashi ; Miyasaka, Tsutomu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-608fd982c41a0fa5c00b83caa80783bdf698a60052b8ea680cdf0f21fe3d26a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cell migration</topic><topic>Charge efficiency</topic><topic>Charge materials</topic><topic>Charge transport</topic><topic>Cost effectiveness</topic><topic>Defects</topic><topic>Energy charge</topic><topic>Gallium</topic><topic>Interlayers</topic><topic>Ion migration</topic><topic>Lewis base</topic><topic>Manufacturing</topic><topic>Manufacturing industry</topic><topic>P-type semiconductors</topic><topic>Passivity</topic><topic>Performance degradation</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Sustainable energy</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohsawa, Tatsuya</creatorcontrib><creatorcontrib>Shibayama, Naoyuki</creatorcontrib><creatorcontrib>Nakamura, Nobuhiro</creatorcontrib><creatorcontrib>Tamura, Shigeto</creatorcontrib><creatorcontrib>Hayakawa, Ai</creatorcontrib><creatorcontrib>Murayama, Yohei</creatorcontrib><creatorcontrib>Makisumi, Kohei</creatorcontrib><creatorcontrib>Kitahara, Michitaka</creatorcontrib><creatorcontrib>Takayama, Mizuki</creatorcontrib><creatorcontrib>Matsui, Takashi</creatorcontrib><creatorcontrib>Okuda, Atsushi</creatorcontrib><creatorcontrib>Nakamura, Yuiga</creatorcontrib><creatorcontrib>Ikegami, Masashi</creatorcontrib><creatorcontrib>Miyasaka, Tsutomu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohsawa, Tatsuya</au><au>Shibayama, Naoyuki</au><au>Nakamura, Nobuhiro</au><au>Tamura, Shigeto</au><au>Hayakawa, Ai</au><au>Murayama, Yohei</au><au>Makisumi, Kohei</au><au>Kitahara, Michitaka</au><au>Takayama, Mizuki</au><au>Matsui, Takashi</au><au>Okuda, Atsushi</au><au>Nakamura, Yuiga</au><au>Ikegami, Masashi</au><au>Miyasaka, Tsutomu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A phthalocyanine-based polycrystalline interlayer simultaneously realizing charge collection and ion defect passivation for perovskite solar cells</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-08-27</date><risdate>2024</risdate><volume>12</volume><issue>34</issue><spage>2251</spage><epage>22515</epage><pages>2251-22515</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>In the quest for sustainable energy solutions, perovskite solar cells have emerged as a promising avenue due to their remarkable efficiency and cost-effectiveness. However, their widespread adoption is hampered by performance degradation issues primarily attributed to ion migration and vacancy formation within halide perovskite films. To mitigate the impact of ion defects, a passivation layer, which typically acts as a barrier for carriers, is employed. Nonetheless, the requirement for extreme thinness to avoid increasing series resistance complicates the manufacturing process. In this study, we introduced gallium phthalocyanine hydroxide (OHGaPc), a p-type organic semiconductor with Lewis base functionality, as a passivation layer to mitigate performance degradation in perovskite solar cells. We demonstrated that this material passivates halide vacancies by being a Lewis base and promotes efficient charge transport as a p-type semiconductor. This dual functionality of OHGaPc not only enhances the stability and performance of perovskite solar cells but also simplifies the manufacturing process by obviating the need for ultra-thin insulating films. Our findings underscore the significance of leveraging the properties of Lewis bases and p-type semiconductors in improving charge extraction and overall cell efficiency, setting a new direction in the development of durable and efficient perovskite solar cells. Perovskite solar cells are efficient and cost-effective but have issues with ion migration from light irradiation. This study uses OHGaPc as a passivation layer to improve light stability and charge transport, increasing efficiency.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta02491e</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2182-049X</orcidid><orcidid>https://orcid.org/0000-0001-8535-7911</orcidid><orcidid>https://orcid.org/0000-0003-3696-0997</orcidid><orcidid>https://orcid.org/0000-0003-4735-9152</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-08, Vol.12 (34), p.2251-22515
issn 2050-7488
2050-7496
language eng
recordid cdi_rsc_primary_d4ta02491e
source Royal Society of Chemistry Journals
subjects Cell migration
Charge efficiency
Charge materials
Charge transport
Cost effectiveness
Defects
Energy charge
Gallium
Interlayers
Ion migration
Lewis base
Manufacturing
Manufacturing industry
P-type semiconductors
Passivity
Performance degradation
Perovskites
Photovoltaic cells
Solar cells
Solar energy
Sustainable energy
Thin films
title A phthalocyanine-based polycrystalline interlayer simultaneously realizing charge collection and ion defect passivation for perovskite solar cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20phthalocyanine-based%20polycrystalline%20interlayer%20simultaneously%20realizing%20charge%20collection%20and%20ion%20defect%20passivation%20for%20perovskite%20solar%20cells&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Ohsawa,%20Tatsuya&rft.date=2024-08-27&rft.volume=12&rft.issue=34&rft.spage=2251&rft.epage=22515&rft.pages=2251-22515&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta02491e&rft_dat=%3Cproquest_rsc_p%3E3097460726%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c170t-608fd982c41a0fa5c00b83caa80783bdf698a60052b8ea680cdf0f21fe3d26a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3097460726&rft_id=info:pmid/&rfr_iscdi=true