Loading…

Enhanced photoelectrochemical nitrogen reduction to ammonia by a plasmon-active Au grating decorated with the gCN@MoS heterosystem and plasmon-active nanoparticles

The electrochemical production of ammonia from nitrogen (so-called nitrogen reduction reaction - NRR) is one of the key tasks of modern electrochemistry. The use of photo-electrochemical approaches in the NRR allows the involvement of renewable sunlight energy and partially reduces the energy demand...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-08, Vol.12 (32), p.2131-2132
Main Authors: Zabelin, Denis, Tulupova, Anastasiia, Zabelina, Anna, Tosovska, Andrea, Valiev, Rashid, Ramazanov, Ruslan, Mares, David, Jerabek, Vitezslav, Burtsev, Vasilii, Erzina, Mariia, Michalcová, Alena, Skvortsova, Anastasiia, Svorcik, Vaclav, Lyutakov, Oleksiy
Format: Article
Language:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2132
container_issue 32
container_start_page 2131
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Zabelin, Denis
Tulupova, Anastasiia
Zabelina, Anna
Tosovska, Andrea
Valiev, Rashid
Ramazanov, Ruslan
Mares, David
Jerabek, Vitezslav
Burtsev, Vasilii
Erzina, Mariia
Michalcová, Alena
Skvortsova, Anastasiia
Svorcik, Vaclav
Lyutakov, Oleksiy
description The electrochemical production of ammonia from nitrogen (so-called nitrogen reduction reaction - NRR) is one of the key tasks of modern electrochemistry. The use of photo-electrochemical approaches in the NRR allows the involvement of renewable sunlight energy and partially reduces the energy demand of the NRR process and increases its efficiency. For efficient photoelectrochemical NRR realization, a rational design of the photoelectrode used is required. In this work, we propose the design, creation, and optimization of a hybrid electrode, based on utilization of coupled 2D semiconductors and plasmonic hot spots. In our approach, the gC 3 N 4 @MoS 2 semiconductor (in the form of 2D flakes), with high catalytic activity towards the NRR is used as a redox-active material. For the involvement of sunlight energy, plasmon triggering is used in two modes: simple plasmonic triggering using a periodic Au grating and coupled plasmon triggering through the sandwiching of 2D gC 3 N 4 @MoS 2 flakes between the Au grating and different plasmon active nanoparticles (gold and silver nanoparticles with different shapes). We also carried out a series of calculations (including finite difference time domain estimation of plasmon energy distribution and density functional calculation) aimed at the estimation of the local value of plasmon energy and the NRR process under conditions of plasmon triggering. As a result of careful design and photoelectrode optimization, we were able to achieve 882.1 μg h −1 mg cat −1 ammonia yield and 22.1% faradaic efficiency. The proposed photoelectrode design makes it possible to effectively use both the catalytic properties of the coupled semiconductors and the strengths of plasmon-assisted triggering. Coupled plasmon triggering significantly enhanced the NRR efficiency on the surface of semiconductor heterostructure (2D/2D) gC 3 N 4 @MoS 2 .
doi_str_mv 10.1039/d4ta03350g
format article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d4ta03350g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d4ta03350g</sourcerecordid><originalsourceid>FETCH-rsc_primary_d4ta03350g3</originalsourceid><addsrcrecordid>eNqFj0FLAzEUhIMoWLQX78L7A6up29bdm1IqXvSi9_JMnptI8rIkr8r-Hv-oOYiCF-cy8zEwMEqdLfTFQrf9pV0K6rZd6eFAza70SjfXy359-JO77ljNS3nTVZ3W676fqc8tO2RDFkaXJFEgIzkZR9EbDMC-0kAMmezeiE8MkgBjTOwRXiZAGAOWig3W-p3gdg9DRvE8gCWTaqzbH14ciCMYNo83D-kJHAnlVKYiFAHZ_l1h5DRiFm8ClVN19Iqh0PzbT9T53fZ5c9_kYnZj9hHztPs93_7XfwGhsGGD</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced photoelectrochemical nitrogen reduction to ammonia by a plasmon-active Au grating decorated with the gCN@MoS heterosystem and plasmon-active nanoparticles</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Zabelin, Denis ; Tulupova, Anastasiia ; Zabelina, Anna ; Tosovska, Andrea ; Valiev, Rashid ; Ramazanov, Ruslan ; Mares, David ; Jerabek, Vitezslav ; Burtsev, Vasilii ; Erzina, Mariia ; Michalcová, Alena ; Skvortsova, Anastasiia ; Svorcik, Vaclav ; Lyutakov, Oleksiy</creator><creatorcontrib>Zabelin, Denis ; Tulupova, Anastasiia ; Zabelina, Anna ; Tosovska, Andrea ; Valiev, Rashid ; Ramazanov, Ruslan ; Mares, David ; Jerabek, Vitezslav ; Burtsev, Vasilii ; Erzina, Mariia ; Michalcová, Alena ; Skvortsova, Anastasiia ; Svorcik, Vaclav ; Lyutakov, Oleksiy</creatorcontrib><description>The electrochemical production of ammonia from nitrogen (so-called nitrogen reduction reaction - NRR) is one of the key tasks of modern electrochemistry. The use of photo-electrochemical approaches in the NRR allows the involvement of renewable sunlight energy and partially reduces the energy demand of the NRR process and increases its efficiency. For efficient photoelectrochemical NRR realization, a rational design of the photoelectrode used is required. In this work, we propose the design, creation, and optimization of a hybrid electrode, based on utilization of coupled 2D semiconductors and plasmonic hot spots. In our approach, the gC 3 N 4 @MoS 2 semiconductor (in the form of 2D flakes), with high catalytic activity towards the NRR is used as a redox-active material. For the involvement of sunlight energy, plasmon triggering is used in two modes: simple plasmonic triggering using a periodic Au grating and coupled plasmon triggering through the sandwiching of 2D gC 3 N 4 @MoS 2 flakes between the Au grating and different plasmon active nanoparticles (gold and silver nanoparticles with different shapes). We also carried out a series of calculations (including finite difference time domain estimation of plasmon energy distribution and density functional calculation) aimed at the estimation of the local value of plasmon energy and the NRR process under conditions of plasmon triggering. As a result of careful design and photoelectrode optimization, we were able to achieve 882.1 μg h −1 mg cat −1 ammonia yield and 22.1% faradaic efficiency. The proposed photoelectrode design makes it possible to effectively use both the catalytic properties of the coupled semiconductors and the strengths of plasmon-assisted triggering. Coupled plasmon triggering significantly enhanced the NRR efficiency on the surface of semiconductor heterostructure (2D/2D) gC 3 N 4 @MoS 2 .</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta03350g</identifier><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-08, Vol.12 (32), p.2131-2132</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zabelin, Denis</creatorcontrib><creatorcontrib>Tulupova, Anastasiia</creatorcontrib><creatorcontrib>Zabelina, Anna</creatorcontrib><creatorcontrib>Tosovska, Andrea</creatorcontrib><creatorcontrib>Valiev, Rashid</creatorcontrib><creatorcontrib>Ramazanov, Ruslan</creatorcontrib><creatorcontrib>Mares, David</creatorcontrib><creatorcontrib>Jerabek, Vitezslav</creatorcontrib><creatorcontrib>Burtsev, Vasilii</creatorcontrib><creatorcontrib>Erzina, Mariia</creatorcontrib><creatorcontrib>Michalcová, Alena</creatorcontrib><creatorcontrib>Skvortsova, Anastasiia</creatorcontrib><creatorcontrib>Svorcik, Vaclav</creatorcontrib><creatorcontrib>Lyutakov, Oleksiy</creatorcontrib><title>Enhanced photoelectrochemical nitrogen reduction to ammonia by a plasmon-active Au grating decorated with the gCN@MoS heterosystem and plasmon-active nanoparticles</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The electrochemical production of ammonia from nitrogen (so-called nitrogen reduction reaction - NRR) is one of the key tasks of modern electrochemistry. The use of photo-electrochemical approaches in the NRR allows the involvement of renewable sunlight energy and partially reduces the energy demand of the NRR process and increases its efficiency. For efficient photoelectrochemical NRR realization, a rational design of the photoelectrode used is required. In this work, we propose the design, creation, and optimization of a hybrid electrode, based on utilization of coupled 2D semiconductors and plasmonic hot spots. In our approach, the gC 3 N 4 @MoS 2 semiconductor (in the form of 2D flakes), with high catalytic activity towards the NRR is used as a redox-active material. For the involvement of sunlight energy, plasmon triggering is used in two modes: simple plasmonic triggering using a periodic Au grating and coupled plasmon triggering through the sandwiching of 2D gC 3 N 4 @MoS 2 flakes between the Au grating and different plasmon active nanoparticles (gold and silver nanoparticles with different shapes). We also carried out a series of calculations (including finite difference time domain estimation of plasmon energy distribution and density functional calculation) aimed at the estimation of the local value of plasmon energy and the NRR process under conditions of plasmon triggering. As a result of careful design and photoelectrode optimization, we were able to achieve 882.1 μg h −1 mg cat −1 ammonia yield and 22.1% faradaic efficiency. The proposed photoelectrode design makes it possible to effectively use both the catalytic properties of the coupled semiconductors and the strengths of plasmon-assisted triggering. Coupled plasmon triggering significantly enhanced the NRR efficiency on the surface of semiconductor heterostructure (2D/2D) gC 3 N 4 @MoS 2 .</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj0FLAzEUhIMoWLQX78L7A6up29bdm1IqXvSi9_JMnptI8rIkr8r-Hv-oOYiCF-cy8zEwMEqdLfTFQrf9pV0K6rZd6eFAza70SjfXy359-JO77ljNS3nTVZ3W676fqc8tO2RDFkaXJFEgIzkZR9EbDMC-0kAMmezeiE8MkgBjTOwRXiZAGAOWig3W-p3gdg9DRvE8gCWTaqzbH14ciCMYNo83D-kJHAnlVKYiFAHZ_l1h5DRiFm8ClVN19Iqh0PzbT9T53fZ5c9_kYnZj9hHztPs93_7XfwGhsGGD</recordid><startdate>20240813</startdate><enddate>20240813</enddate><creator>Zabelin, Denis</creator><creator>Tulupova, Anastasiia</creator><creator>Zabelina, Anna</creator><creator>Tosovska, Andrea</creator><creator>Valiev, Rashid</creator><creator>Ramazanov, Ruslan</creator><creator>Mares, David</creator><creator>Jerabek, Vitezslav</creator><creator>Burtsev, Vasilii</creator><creator>Erzina, Mariia</creator><creator>Michalcová, Alena</creator><creator>Skvortsova, Anastasiia</creator><creator>Svorcik, Vaclav</creator><creator>Lyutakov, Oleksiy</creator><scope/></search><sort><creationdate>20240813</creationdate><title>Enhanced photoelectrochemical nitrogen reduction to ammonia by a plasmon-active Au grating decorated with the gCN@MoS heterosystem and plasmon-active nanoparticles</title><author>Zabelin, Denis ; Tulupova, Anastasiia ; Zabelina, Anna ; Tosovska, Andrea ; Valiev, Rashid ; Ramazanov, Ruslan ; Mares, David ; Jerabek, Vitezslav ; Burtsev, Vasilii ; Erzina, Mariia ; Michalcová, Alena ; Skvortsova, Anastasiia ; Svorcik, Vaclav ; Lyutakov, Oleksiy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d4ta03350g3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zabelin, Denis</creatorcontrib><creatorcontrib>Tulupova, Anastasiia</creatorcontrib><creatorcontrib>Zabelina, Anna</creatorcontrib><creatorcontrib>Tosovska, Andrea</creatorcontrib><creatorcontrib>Valiev, Rashid</creatorcontrib><creatorcontrib>Ramazanov, Ruslan</creatorcontrib><creatorcontrib>Mares, David</creatorcontrib><creatorcontrib>Jerabek, Vitezslav</creatorcontrib><creatorcontrib>Burtsev, Vasilii</creatorcontrib><creatorcontrib>Erzina, Mariia</creatorcontrib><creatorcontrib>Michalcová, Alena</creatorcontrib><creatorcontrib>Skvortsova, Anastasiia</creatorcontrib><creatorcontrib>Svorcik, Vaclav</creatorcontrib><creatorcontrib>Lyutakov, Oleksiy</creatorcontrib><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zabelin, Denis</au><au>Tulupova, Anastasiia</au><au>Zabelina, Anna</au><au>Tosovska, Andrea</au><au>Valiev, Rashid</au><au>Ramazanov, Ruslan</au><au>Mares, David</au><au>Jerabek, Vitezslav</au><au>Burtsev, Vasilii</au><au>Erzina, Mariia</au><au>Michalcová, Alena</au><au>Skvortsova, Anastasiia</au><au>Svorcik, Vaclav</au><au>Lyutakov, Oleksiy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced photoelectrochemical nitrogen reduction to ammonia by a plasmon-active Au grating decorated with the gCN@MoS heterosystem and plasmon-active nanoparticles</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-08-13</date><risdate>2024</risdate><volume>12</volume><issue>32</issue><spage>2131</spage><epage>2132</epage><pages>2131-2132</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The electrochemical production of ammonia from nitrogen (so-called nitrogen reduction reaction - NRR) is one of the key tasks of modern electrochemistry. The use of photo-electrochemical approaches in the NRR allows the involvement of renewable sunlight energy and partially reduces the energy demand of the NRR process and increases its efficiency. For efficient photoelectrochemical NRR realization, a rational design of the photoelectrode used is required. In this work, we propose the design, creation, and optimization of a hybrid electrode, based on utilization of coupled 2D semiconductors and plasmonic hot spots. In our approach, the gC 3 N 4 @MoS 2 semiconductor (in the form of 2D flakes), with high catalytic activity towards the NRR is used as a redox-active material. For the involvement of sunlight energy, plasmon triggering is used in two modes: simple plasmonic triggering using a periodic Au grating and coupled plasmon triggering through the sandwiching of 2D gC 3 N 4 @MoS 2 flakes between the Au grating and different plasmon active nanoparticles (gold and silver nanoparticles with different shapes). We also carried out a series of calculations (including finite difference time domain estimation of plasmon energy distribution and density functional calculation) aimed at the estimation of the local value of plasmon energy and the NRR process under conditions of plasmon triggering. As a result of careful design and photoelectrode optimization, we were able to achieve 882.1 μg h −1 mg cat −1 ammonia yield and 22.1% faradaic efficiency. The proposed photoelectrode design makes it possible to effectively use both the catalytic properties of the coupled semiconductors and the strengths of plasmon-assisted triggering. Coupled plasmon triggering significantly enhanced the NRR efficiency on the surface of semiconductor heterostructure (2D/2D) gC 3 N 4 @MoS 2 .</abstract><doi>10.1039/d4ta03350g</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-08, Vol.12 (32), p.2131-2132
issn 2050-7488
2050-7496
language
recordid cdi_rsc_primary_d4ta03350g
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
title Enhanced photoelectrochemical nitrogen reduction to ammonia by a plasmon-active Au grating decorated with the gCN@MoS heterosystem and plasmon-active nanoparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A21%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20photoelectrochemical%20nitrogen%20reduction%20to%20ammonia%20by%20a%20plasmon-active%20Au%20grating%20decorated%20with%20the%20gCN@MoS%20heterosystem%20and%20plasmon-active%20nanoparticles&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Zabelin,%20Denis&rft.date=2024-08-13&rft.volume=12&rft.issue=32&rft.spage=2131&rft.epage=2132&rft.pages=2131-2132&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta03350g&rft_dat=%3Crsc%3Ed4ta03350g%3C/rsc%3E%3Cgrp_id%3Ecdi_FETCH-rsc_primary_d4ta03350g3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true