Loading…

Recent advances in two-dimensional materials for drug delivery

Two-dimensional (2D) materials exhibit significant potential in biomedical applications, particularly as drug carriers. Thus, 2D materials, including graphene, black phosphorus, transition metal dichalcogenides, transition metal carbides/nitrides, and hexagonal boron nitride, have been extensively s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2024-12, Vol.12 (48), p.12437-12469
Main Authors: Zhang, Ranran, Yan, Zichao, Gao, Ming, Zheng, Bingxin, Yue, Bin, Qiu, Meng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two-dimensional (2D) materials exhibit significant potential in biomedical applications, particularly as drug carriers. Thus, 2D materials, including graphene, black phosphorus, transition metal dichalcogenides, transition metal carbides/nitrides, and hexagonal boron nitride, have been extensively studied. Their large specific surface area, abundant surface active sites, and excellent biocompatibility and biodegradability make them ideal platforms for drug loading and delivery. By optimizing the physicochemical properties and methods for the surface modification of 2D materials, improved drug release mechanisms and enhanced combination therapy effects can be achieved, providing a reliable foundation for efficient cancer treatment. This review provides a comprehensive analysis of the recent advances in the utilization of 2D materials for drug delivery. It systematically categorizes and summarizes the preparation methodologies, surface modification strategies, application domains, primary advantages and potential drawbacks of various 2D materials in the biomedical field. Furthermore, it provides an extensive overview of current challenges in this field and outlines potential future research directions for 2D materials in drug delivery based on existing issues. This review summarizes the classification and methods for the fabrication of emerging 2D nanomaterials and emphasizes their distinctive properties and biomedical applications that distinguish them from traditional nanomaterials.
ISSN:2050-750X
2050-7518
2050-7518
DOI:10.1039/d4tb01787k