Loading…
Low-voltage polymer monolayer transistors for high-gain unipolar and complementary logic inverters
Cutting-edge integrated circuits based on organic transistors, though promising, encounter a notable obstacle due to their tendency for high power consumption, thereby constraining their broader practical applications. This study demonstrates low-voltage polymer monolayer thin-film transistors (TFTs...
Saved in:
Published in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2024-07, Vol.12 (26), p.9562-957 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c170t-1150e2cf7ddd69d5a5d5038e4cdaad7e1ef4af2e1cc268f7ef737b10b5584013 |
container_end_page | 957 |
container_issue | 26 |
container_start_page | 9562 |
container_title | Journal of materials chemistry. C, Materials for optical and electronic devices |
container_volume | 12 |
creator | Cheng, Miao Zhang, Yanqin Zheng, Lei Zhang, Jianwei Xie, Yifan Jin, Qingqing Tian, Yue Wang, Jinyao Xiao, Hongmei Dou, Chunmeng Yang, Zhenzhong Li, Mengmeng Li, Ling Liu, Ming |
description | Cutting-edge integrated circuits based on organic transistors, though promising, encounter a notable obstacle due to their tendency for high power consumption, thereby constraining their broader practical applications. This study demonstrates low-voltage polymer monolayer thin-film transistors (TFTs) and high-gain logic inverters, wherein the utilization of thin films of AlO
x
as gate dielectrics effectively enhances the gate controllability of TFTs. A photolithography-compatible method using a sacrificial layer is proposed to pattern the polymer monolayer, which significantly reduces off-state and gate leakage currents to 10
−12
A and achieves a steep subthreshold swing of 86 mV dec
−1
. These device performances generate a maximum intrinsic gain of 10
4
V/V, enabling the development of zero-
V
GS
-load logic inverters with voltage gains up to 251 V/V at a −3 V operation voltage (
V
DD
). Additionally, hybrid complementary inverters by integrating with amorphous indium gallium zinc oxide (IGZO) exhibit ultra-high voltage gains of 841 V/V at a
V
DD
of 5 V and 7436 V/V at a
V
DD
of 30 V, potentially setting a new benchmark for logic inverters across various semiconductor systems. These results open new avenues for advancements in low-voltage organic and hybrid logics tailored for portable and wearable electronics.
Using thin AlO
x
as dielectrics, low-voltage polymer monolayer TFTs were attained with a SS of 86 mV dec
−1
. The resultant unipolar and complementary inverters exhibited high voltage gains of 251 V/V at
V
DD
= −3 V and 841 V/V at
V
DD
= 5 V. |
doi_str_mv | 10.1039/d4tc01715c |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d4tc01715c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075686899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-1150e2cf7ddd69d5a5d5038e4cdaad7e1ef4af2e1cc268f7ef737b10b5584013</originalsourceid><addsrcrecordid>eNpFkM1LwzAYh4MoOOYu3oWAN6GaNE3THqV-wsDL7iVL3nQdbVKTbLL_3uhkvpf3d3h4Px6Erim5p4TVD7qIilBBuTpDs5xwkgnOivNTzstLtAhhS1JVtKzKeobWS_eV7d0QZQd4csNhBI9HZ90gDylFL23oQ3Q-YOM83vTdJutkb_HO9gmXHkursXLjNMAINkp_wIPreoV7uwcfwYcrdGHkEGDx1-do9fK8at6y5cfre_O4zBQVJGaUcgK5MkJrXdaaS645YRUUSkupBVAwhTQ5UKXysjICjGBiTcma86oglM3R7XHs5N3nDkJst27nbdrYMiJ4ereq60TdHSnlXQgeTDv5fkxXt5S0Pxbbp2LV_FpsEnxzhH1QJ-7fMvsGG21xCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075686899</pqid></control><display><type>article</type><title>Low-voltage polymer monolayer transistors for high-gain unipolar and complementary logic inverters</title><source>Royal Society of Chemistry</source><creator>Cheng, Miao ; Zhang, Yanqin ; Zheng, Lei ; Zhang, Jianwei ; Xie, Yifan ; Jin, Qingqing ; Tian, Yue ; Wang, Jinyao ; Xiao, Hongmei ; Dou, Chunmeng ; Yang, Zhenzhong ; Li, Mengmeng ; Li, Ling ; Liu, Ming</creator><creatorcontrib>Cheng, Miao ; Zhang, Yanqin ; Zheng, Lei ; Zhang, Jianwei ; Xie, Yifan ; Jin, Qingqing ; Tian, Yue ; Wang, Jinyao ; Xiao, Hongmei ; Dou, Chunmeng ; Yang, Zhenzhong ; Li, Mengmeng ; Li, Ling ; Liu, Ming</creatorcontrib><description>Cutting-edge integrated circuits based on organic transistors, though promising, encounter a notable obstacle due to their tendency for high power consumption, thereby constraining their broader practical applications. This study demonstrates low-voltage polymer monolayer thin-film transistors (TFTs) and high-gain logic inverters, wherein the utilization of thin films of AlO
x
as gate dielectrics effectively enhances the gate controllability of TFTs. A photolithography-compatible method using a sacrificial layer is proposed to pattern the polymer monolayer, which significantly reduces off-state and gate leakage currents to 10
−12
A and achieves a steep subthreshold swing of 86 mV dec
−1
. These device performances generate a maximum intrinsic gain of 10
4
V/V, enabling the development of zero-
V
GS
-load logic inverters with voltage gains up to 251 V/V at a −3 V operation voltage (
V
DD
). Additionally, hybrid complementary inverters by integrating with amorphous indium gallium zinc oxide (IGZO) exhibit ultra-high voltage gains of 841 V/V at a
V
DD
of 5 V and 7436 V/V at a
V
DD
of 30 V, potentially setting a new benchmark for logic inverters across various semiconductor systems. These results open new avenues for advancements in low-voltage organic and hybrid logics tailored for portable and wearable electronics.
Using thin AlO
x
as dielectrics, low-voltage polymer monolayer TFTs were attained with a SS of 86 mV dec
−1
. The resultant unipolar and complementary inverters exhibited high voltage gains of 251 V/V at
V
DD
= −3 V and 841 V/V at
V
DD
= 5 V.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d4tc01715c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Current leakage ; Gallium ; High gain ; High voltages ; Indium gallium zinc oxide ; Integrated circuits ; Inverters ; Leakage current ; Logic ; Monolayers ; Photolithography ; Polymer films ; Polymers ; Power consumption ; Semiconductor devices ; Thin film transistors ; Transistors ; Zinc oxide</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2024-07, Vol.12 (26), p.9562-957</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-1150e2cf7ddd69d5a5d5038e4cdaad7e1ef4af2e1cc268f7ef737b10b5584013</cites><orcidid>0000-0003-1117-8106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Cheng, Miao</creatorcontrib><creatorcontrib>Zhang, Yanqin</creatorcontrib><creatorcontrib>Zheng, Lei</creatorcontrib><creatorcontrib>Zhang, Jianwei</creatorcontrib><creatorcontrib>Xie, Yifan</creatorcontrib><creatorcontrib>Jin, Qingqing</creatorcontrib><creatorcontrib>Tian, Yue</creatorcontrib><creatorcontrib>Wang, Jinyao</creatorcontrib><creatorcontrib>Xiao, Hongmei</creatorcontrib><creatorcontrib>Dou, Chunmeng</creatorcontrib><creatorcontrib>Yang, Zhenzhong</creatorcontrib><creatorcontrib>Li, Mengmeng</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><title>Low-voltage polymer monolayer transistors for high-gain unipolar and complementary logic inverters</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Cutting-edge integrated circuits based on organic transistors, though promising, encounter a notable obstacle due to their tendency for high power consumption, thereby constraining their broader practical applications. This study demonstrates low-voltage polymer monolayer thin-film transistors (TFTs) and high-gain logic inverters, wherein the utilization of thin films of AlO
x
as gate dielectrics effectively enhances the gate controllability of TFTs. A photolithography-compatible method using a sacrificial layer is proposed to pattern the polymer monolayer, which significantly reduces off-state and gate leakage currents to 10
−12
A and achieves a steep subthreshold swing of 86 mV dec
−1
. These device performances generate a maximum intrinsic gain of 10
4
V/V, enabling the development of zero-
V
GS
-load logic inverters with voltage gains up to 251 V/V at a −3 V operation voltage (
V
DD
). Additionally, hybrid complementary inverters by integrating with amorphous indium gallium zinc oxide (IGZO) exhibit ultra-high voltage gains of 841 V/V at a
V
DD
of 5 V and 7436 V/V at a
V
DD
of 30 V, potentially setting a new benchmark for logic inverters across various semiconductor systems. These results open new avenues for advancements in low-voltage organic and hybrid logics tailored for portable and wearable electronics.
Using thin AlO
x
as dielectrics, low-voltage polymer monolayer TFTs were attained with a SS of 86 mV dec
−1
. The resultant unipolar and complementary inverters exhibited high voltage gains of 251 V/V at
V
DD
= −3 V and 841 V/V at
V
DD
= 5 V.</description><subject>Current leakage</subject><subject>Gallium</subject><subject>High gain</subject><subject>High voltages</subject><subject>Indium gallium zinc oxide</subject><subject>Integrated circuits</subject><subject>Inverters</subject><subject>Leakage current</subject><subject>Logic</subject><subject>Monolayers</subject><subject>Photolithography</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Power consumption</subject><subject>Semiconductor devices</subject><subject>Thin film transistors</subject><subject>Transistors</subject><subject>Zinc oxide</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LwzAYh4MoOOYu3oWAN6GaNE3THqV-wsDL7iVL3nQdbVKTbLL_3uhkvpf3d3h4Px6Erim5p4TVD7qIilBBuTpDs5xwkgnOivNTzstLtAhhS1JVtKzKeobWS_eV7d0QZQd4csNhBI9HZ90gDylFL23oQ3Q-YOM83vTdJutkb_HO9gmXHkursXLjNMAINkp_wIPreoV7uwcfwYcrdGHkEGDx1-do9fK8at6y5cfre_O4zBQVJGaUcgK5MkJrXdaaS645YRUUSkupBVAwhTQ5UKXysjICjGBiTcma86oglM3R7XHs5N3nDkJst27nbdrYMiJ4ereq60TdHSnlXQgeTDv5fkxXt5S0Pxbbp2LV_FpsEnxzhH1QJ-7fMvsGG21xCA</recordid><startdate>20240704</startdate><enddate>20240704</enddate><creator>Cheng, Miao</creator><creator>Zhang, Yanqin</creator><creator>Zheng, Lei</creator><creator>Zhang, Jianwei</creator><creator>Xie, Yifan</creator><creator>Jin, Qingqing</creator><creator>Tian, Yue</creator><creator>Wang, Jinyao</creator><creator>Xiao, Hongmei</creator><creator>Dou, Chunmeng</creator><creator>Yang, Zhenzhong</creator><creator>Li, Mengmeng</creator><creator>Li, Ling</creator><creator>Liu, Ming</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1117-8106</orcidid></search><sort><creationdate>20240704</creationdate><title>Low-voltage polymer monolayer transistors for high-gain unipolar and complementary logic inverters</title><author>Cheng, Miao ; Zhang, Yanqin ; Zheng, Lei ; Zhang, Jianwei ; Xie, Yifan ; Jin, Qingqing ; Tian, Yue ; Wang, Jinyao ; Xiao, Hongmei ; Dou, Chunmeng ; Yang, Zhenzhong ; Li, Mengmeng ; Li, Ling ; Liu, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-1150e2cf7ddd69d5a5d5038e4cdaad7e1ef4af2e1cc268f7ef737b10b5584013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Current leakage</topic><topic>Gallium</topic><topic>High gain</topic><topic>High voltages</topic><topic>Indium gallium zinc oxide</topic><topic>Integrated circuits</topic><topic>Inverters</topic><topic>Leakage current</topic><topic>Logic</topic><topic>Monolayers</topic><topic>Photolithography</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Power consumption</topic><topic>Semiconductor devices</topic><topic>Thin film transistors</topic><topic>Transistors</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Miao</creatorcontrib><creatorcontrib>Zhang, Yanqin</creatorcontrib><creatorcontrib>Zheng, Lei</creatorcontrib><creatorcontrib>Zhang, Jianwei</creatorcontrib><creatorcontrib>Xie, Yifan</creatorcontrib><creatorcontrib>Jin, Qingqing</creatorcontrib><creatorcontrib>Tian, Yue</creatorcontrib><creatorcontrib>Wang, Jinyao</creatorcontrib><creatorcontrib>Xiao, Hongmei</creatorcontrib><creatorcontrib>Dou, Chunmeng</creatorcontrib><creatorcontrib>Yang, Zhenzhong</creatorcontrib><creatorcontrib>Li, Mengmeng</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Miao</au><au>Zhang, Yanqin</au><au>Zheng, Lei</au><au>Zhang, Jianwei</au><au>Xie, Yifan</au><au>Jin, Qingqing</au><au>Tian, Yue</au><au>Wang, Jinyao</au><au>Xiao, Hongmei</au><au>Dou, Chunmeng</au><au>Yang, Zhenzhong</au><au>Li, Mengmeng</au><au>Li, Ling</au><au>Liu, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-voltage polymer monolayer transistors for high-gain unipolar and complementary logic inverters</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2024-07-04</date><risdate>2024</risdate><volume>12</volume><issue>26</issue><spage>9562</spage><epage>957</epage><pages>9562-957</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Cutting-edge integrated circuits based on organic transistors, though promising, encounter a notable obstacle due to their tendency for high power consumption, thereby constraining their broader practical applications. This study demonstrates low-voltage polymer monolayer thin-film transistors (TFTs) and high-gain logic inverters, wherein the utilization of thin films of AlO
x
as gate dielectrics effectively enhances the gate controllability of TFTs. A photolithography-compatible method using a sacrificial layer is proposed to pattern the polymer monolayer, which significantly reduces off-state and gate leakage currents to 10
−12
A and achieves a steep subthreshold swing of 86 mV dec
−1
. These device performances generate a maximum intrinsic gain of 10
4
V/V, enabling the development of zero-
V
GS
-load logic inverters with voltage gains up to 251 V/V at a −3 V operation voltage (
V
DD
). Additionally, hybrid complementary inverters by integrating with amorphous indium gallium zinc oxide (IGZO) exhibit ultra-high voltage gains of 841 V/V at a
V
DD
of 5 V and 7436 V/V at a
V
DD
of 30 V, potentially setting a new benchmark for logic inverters across various semiconductor systems. These results open new avenues for advancements in low-voltage organic and hybrid logics tailored for portable and wearable electronics.
Using thin AlO
x
as dielectrics, low-voltage polymer monolayer TFTs were attained with a SS of 86 mV dec
−1
. The resultant unipolar and complementary inverters exhibited high voltage gains of 251 V/V at
V
DD
= −3 V and 841 V/V at
V
DD
= 5 V.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4tc01715c</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1117-8106</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7526 |
ispartof | Journal of materials chemistry. C, Materials for optical and electronic devices, 2024-07, Vol.12 (26), p.9562-957 |
issn | 2050-7526 2050-7534 |
language | eng |
recordid | cdi_rsc_primary_d4tc01715c |
source | Royal Society of Chemistry |
subjects | Current leakage Gallium High gain High voltages Indium gallium zinc oxide Integrated circuits Inverters Leakage current Logic Monolayers Photolithography Polymer films Polymers Power consumption Semiconductor devices Thin film transistors Transistors Zinc oxide |
title | Low-voltage polymer monolayer transistors for high-gain unipolar and complementary logic inverters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A28%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-voltage%20polymer%20monolayer%20transistors%20for%20high-gain%20unipolar%20and%20complementary%20logic%20inverters&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Cheng,%20Miao&rft.date=2024-07-04&rft.volume=12&rft.issue=26&rft.spage=9562&rft.epage=957&rft.pages=9562-957&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d4tc01715c&rft_dat=%3Cproquest_rsc_p%3E3075686899%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c170t-1150e2cf7ddd69d5a5d5038e4cdaad7e1ef4af2e1cc268f7ef737b10b5584013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3075686899&rft_id=info:pmid/&rfr_iscdi=true |