Loading…

Low-voltage polymer monolayer transistors for high-gain unipolar and complementary logic inverters

Cutting-edge integrated circuits based on organic transistors, though promising, encounter a notable obstacle due to their tendency for high power consumption, thereby constraining their broader practical applications. This study demonstrates low-voltage polymer monolayer thin-film transistors (TFTs...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2024-07, Vol.12 (26), p.9562-957
Main Authors: Cheng, Miao, Zhang, Yanqin, Zheng, Lei, Zhang, Jianwei, Xie, Yifan, Jin, Qingqing, Tian, Yue, Wang, Jinyao, Xiao, Hongmei, Dou, Chunmeng, Yang, Zhenzhong, Li, Mengmeng, Li, Ling, Liu, Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c170t-1150e2cf7ddd69d5a5d5038e4cdaad7e1ef4af2e1cc268f7ef737b10b5584013
container_end_page 957
container_issue 26
container_start_page 9562
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 12
creator Cheng, Miao
Zhang, Yanqin
Zheng, Lei
Zhang, Jianwei
Xie, Yifan
Jin, Qingqing
Tian, Yue
Wang, Jinyao
Xiao, Hongmei
Dou, Chunmeng
Yang, Zhenzhong
Li, Mengmeng
Li, Ling
Liu, Ming
description Cutting-edge integrated circuits based on organic transistors, though promising, encounter a notable obstacle due to their tendency for high power consumption, thereby constraining their broader practical applications. This study demonstrates low-voltage polymer monolayer thin-film transistors (TFTs) and high-gain logic inverters, wherein the utilization of thin films of AlO x as gate dielectrics effectively enhances the gate controllability of TFTs. A photolithography-compatible method using a sacrificial layer is proposed to pattern the polymer monolayer, which significantly reduces off-state and gate leakage currents to 10 −12 A and achieves a steep subthreshold swing of 86 mV dec −1 . These device performances generate a maximum intrinsic gain of 10 4 V/V, enabling the development of zero- V GS -load logic inverters with voltage gains up to 251 V/V at a −3 V operation voltage ( V DD ). Additionally, hybrid complementary inverters by integrating with amorphous indium gallium zinc oxide (IGZO) exhibit ultra-high voltage gains of 841 V/V at a V DD of 5 V and 7436 V/V at a V DD of 30 V, potentially setting a new benchmark for logic inverters across various semiconductor systems. These results open new avenues for advancements in low-voltage organic and hybrid logics tailored for portable and wearable electronics. Using thin AlO x as dielectrics, low-voltage polymer monolayer TFTs were attained with a SS of 86 mV dec −1 . The resultant unipolar and complementary inverters exhibited high voltage gains of 251 V/V at V DD = −3 V and 841 V/V at V DD = 5 V.
doi_str_mv 10.1039/d4tc01715c
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d4tc01715c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075686899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-1150e2cf7ddd69d5a5d5038e4cdaad7e1ef4af2e1cc268f7ef737b10b5584013</originalsourceid><addsrcrecordid>eNpFkM1LwzAYh4MoOOYu3oWAN6GaNE3THqV-wsDL7iVL3nQdbVKTbLL_3uhkvpf3d3h4Px6Erim5p4TVD7qIilBBuTpDs5xwkgnOivNTzstLtAhhS1JVtKzKeobWS_eV7d0QZQd4csNhBI9HZ90gDylFL23oQ3Q-YOM83vTdJutkb_HO9gmXHkursXLjNMAINkp_wIPreoV7uwcfwYcrdGHkEGDx1-do9fK8at6y5cfre_O4zBQVJGaUcgK5MkJrXdaaS645YRUUSkupBVAwhTQ5UKXysjICjGBiTcma86oglM3R7XHs5N3nDkJst27nbdrYMiJ4ereq60TdHSnlXQgeTDv5fkxXt5S0Pxbbp2LV_FpsEnxzhH1QJ-7fMvsGG21xCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075686899</pqid></control><display><type>article</type><title>Low-voltage polymer monolayer transistors for high-gain unipolar and complementary logic inverters</title><source>Royal Society of Chemistry</source><creator>Cheng, Miao ; Zhang, Yanqin ; Zheng, Lei ; Zhang, Jianwei ; Xie, Yifan ; Jin, Qingqing ; Tian, Yue ; Wang, Jinyao ; Xiao, Hongmei ; Dou, Chunmeng ; Yang, Zhenzhong ; Li, Mengmeng ; Li, Ling ; Liu, Ming</creator><creatorcontrib>Cheng, Miao ; Zhang, Yanqin ; Zheng, Lei ; Zhang, Jianwei ; Xie, Yifan ; Jin, Qingqing ; Tian, Yue ; Wang, Jinyao ; Xiao, Hongmei ; Dou, Chunmeng ; Yang, Zhenzhong ; Li, Mengmeng ; Li, Ling ; Liu, Ming</creatorcontrib><description>Cutting-edge integrated circuits based on organic transistors, though promising, encounter a notable obstacle due to their tendency for high power consumption, thereby constraining their broader practical applications. This study demonstrates low-voltage polymer monolayer thin-film transistors (TFTs) and high-gain logic inverters, wherein the utilization of thin films of AlO x as gate dielectrics effectively enhances the gate controllability of TFTs. A photolithography-compatible method using a sacrificial layer is proposed to pattern the polymer monolayer, which significantly reduces off-state and gate leakage currents to 10 −12 A and achieves a steep subthreshold swing of 86 mV dec −1 . These device performances generate a maximum intrinsic gain of 10 4 V/V, enabling the development of zero- V GS -load logic inverters with voltage gains up to 251 V/V at a −3 V operation voltage ( V DD ). Additionally, hybrid complementary inverters by integrating with amorphous indium gallium zinc oxide (IGZO) exhibit ultra-high voltage gains of 841 V/V at a V DD of 5 V and 7436 V/V at a V DD of 30 V, potentially setting a new benchmark for logic inverters across various semiconductor systems. These results open new avenues for advancements in low-voltage organic and hybrid logics tailored for portable and wearable electronics. Using thin AlO x as dielectrics, low-voltage polymer monolayer TFTs were attained with a SS of 86 mV dec −1 . The resultant unipolar and complementary inverters exhibited high voltage gains of 251 V/V at V DD = −3 V and 841 V/V at V DD = 5 V.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d4tc01715c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Current leakage ; Gallium ; High gain ; High voltages ; Indium gallium zinc oxide ; Integrated circuits ; Inverters ; Leakage current ; Logic ; Monolayers ; Photolithography ; Polymer films ; Polymers ; Power consumption ; Semiconductor devices ; Thin film transistors ; Transistors ; Zinc oxide</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2024-07, Vol.12 (26), p.9562-957</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-1150e2cf7ddd69d5a5d5038e4cdaad7e1ef4af2e1cc268f7ef737b10b5584013</cites><orcidid>0000-0003-1117-8106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Cheng, Miao</creatorcontrib><creatorcontrib>Zhang, Yanqin</creatorcontrib><creatorcontrib>Zheng, Lei</creatorcontrib><creatorcontrib>Zhang, Jianwei</creatorcontrib><creatorcontrib>Xie, Yifan</creatorcontrib><creatorcontrib>Jin, Qingqing</creatorcontrib><creatorcontrib>Tian, Yue</creatorcontrib><creatorcontrib>Wang, Jinyao</creatorcontrib><creatorcontrib>Xiao, Hongmei</creatorcontrib><creatorcontrib>Dou, Chunmeng</creatorcontrib><creatorcontrib>Yang, Zhenzhong</creatorcontrib><creatorcontrib>Li, Mengmeng</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><title>Low-voltage polymer monolayer transistors for high-gain unipolar and complementary logic inverters</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Cutting-edge integrated circuits based on organic transistors, though promising, encounter a notable obstacle due to their tendency for high power consumption, thereby constraining their broader practical applications. This study demonstrates low-voltage polymer monolayer thin-film transistors (TFTs) and high-gain logic inverters, wherein the utilization of thin films of AlO x as gate dielectrics effectively enhances the gate controllability of TFTs. A photolithography-compatible method using a sacrificial layer is proposed to pattern the polymer monolayer, which significantly reduces off-state and gate leakage currents to 10 −12 A and achieves a steep subthreshold swing of 86 mV dec −1 . These device performances generate a maximum intrinsic gain of 10 4 V/V, enabling the development of zero- V GS -load logic inverters with voltage gains up to 251 V/V at a −3 V operation voltage ( V DD ). Additionally, hybrid complementary inverters by integrating with amorphous indium gallium zinc oxide (IGZO) exhibit ultra-high voltage gains of 841 V/V at a V DD of 5 V and 7436 V/V at a V DD of 30 V, potentially setting a new benchmark for logic inverters across various semiconductor systems. These results open new avenues for advancements in low-voltage organic and hybrid logics tailored for portable and wearable electronics. Using thin AlO x as dielectrics, low-voltage polymer monolayer TFTs were attained with a SS of 86 mV dec −1 . The resultant unipolar and complementary inverters exhibited high voltage gains of 251 V/V at V DD = −3 V and 841 V/V at V DD = 5 V.</description><subject>Current leakage</subject><subject>Gallium</subject><subject>High gain</subject><subject>High voltages</subject><subject>Indium gallium zinc oxide</subject><subject>Integrated circuits</subject><subject>Inverters</subject><subject>Leakage current</subject><subject>Logic</subject><subject>Monolayers</subject><subject>Photolithography</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Power consumption</subject><subject>Semiconductor devices</subject><subject>Thin film transistors</subject><subject>Transistors</subject><subject>Zinc oxide</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LwzAYh4MoOOYu3oWAN6GaNE3THqV-wsDL7iVL3nQdbVKTbLL_3uhkvpf3d3h4Px6Erim5p4TVD7qIilBBuTpDs5xwkgnOivNTzstLtAhhS1JVtKzKeobWS_eV7d0QZQd4csNhBI9HZ90gDylFL23oQ3Q-YOM83vTdJutkb_HO9gmXHkursXLjNMAINkp_wIPreoV7uwcfwYcrdGHkEGDx1-do9fK8at6y5cfre_O4zBQVJGaUcgK5MkJrXdaaS645YRUUSkupBVAwhTQ5UKXysjICjGBiTcma86oglM3R7XHs5N3nDkJst27nbdrYMiJ4ereq60TdHSnlXQgeTDv5fkxXt5S0Pxbbp2LV_FpsEnxzhH1QJ-7fMvsGG21xCA</recordid><startdate>20240704</startdate><enddate>20240704</enddate><creator>Cheng, Miao</creator><creator>Zhang, Yanqin</creator><creator>Zheng, Lei</creator><creator>Zhang, Jianwei</creator><creator>Xie, Yifan</creator><creator>Jin, Qingqing</creator><creator>Tian, Yue</creator><creator>Wang, Jinyao</creator><creator>Xiao, Hongmei</creator><creator>Dou, Chunmeng</creator><creator>Yang, Zhenzhong</creator><creator>Li, Mengmeng</creator><creator>Li, Ling</creator><creator>Liu, Ming</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1117-8106</orcidid></search><sort><creationdate>20240704</creationdate><title>Low-voltage polymer monolayer transistors for high-gain unipolar and complementary logic inverters</title><author>Cheng, Miao ; Zhang, Yanqin ; Zheng, Lei ; Zhang, Jianwei ; Xie, Yifan ; Jin, Qingqing ; Tian, Yue ; Wang, Jinyao ; Xiao, Hongmei ; Dou, Chunmeng ; Yang, Zhenzhong ; Li, Mengmeng ; Li, Ling ; Liu, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-1150e2cf7ddd69d5a5d5038e4cdaad7e1ef4af2e1cc268f7ef737b10b5584013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Current leakage</topic><topic>Gallium</topic><topic>High gain</topic><topic>High voltages</topic><topic>Indium gallium zinc oxide</topic><topic>Integrated circuits</topic><topic>Inverters</topic><topic>Leakage current</topic><topic>Logic</topic><topic>Monolayers</topic><topic>Photolithography</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Power consumption</topic><topic>Semiconductor devices</topic><topic>Thin film transistors</topic><topic>Transistors</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Miao</creatorcontrib><creatorcontrib>Zhang, Yanqin</creatorcontrib><creatorcontrib>Zheng, Lei</creatorcontrib><creatorcontrib>Zhang, Jianwei</creatorcontrib><creatorcontrib>Xie, Yifan</creatorcontrib><creatorcontrib>Jin, Qingqing</creatorcontrib><creatorcontrib>Tian, Yue</creatorcontrib><creatorcontrib>Wang, Jinyao</creatorcontrib><creatorcontrib>Xiao, Hongmei</creatorcontrib><creatorcontrib>Dou, Chunmeng</creatorcontrib><creatorcontrib>Yang, Zhenzhong</creatorcontrib><creatorcontrib>Li, Mengmeng</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Miao</au><au>Zhang, Yanqin</au><au>Zheng, Lei</au><au>Zhang, Jianwei</au><au>Xie, Yifan</au><au>Jin, Qingqing</au><au>Tian, Yue</au><au>Wang, Jinyao</au><au>Xiao, Hongmei</au><au>Dou, Chunmeng</au><au>Yang, Zhenzhong</au><au>Li, Mengmeng</au><au>Li, Ling</au><au>Liu, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-voltage polymer monolayer transistors for high-gain unipolar and complementary logic inverters</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2024-07-04</date><risdate>2024</risdate><volume>12</volume><issue>26</issue><spage>9562</spage><epage>957</epage><pages>9562-957</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Cutting-edge integrated circuits based on organic transistors, though promising, encounter a notable obstacle due to their tendency for high power consumption, thereby constraining their broader practical applications. This study demonstrates low-voltage polymer monolayer thin-film transistors (TFTs) and high-gain logic inverters, wherein the utilization of thin films of AlO x as gate dielectrics effectively enhances the gate controllability of TFTs. A photolithography-compatible method using a sacrificial layer is proposed to pattern the polymer monolayer, which significantly reduces off-state and gate leakage currents to 10 −12 A and achieves a steep subthreshold swing of 86 mV dec −1 . These device performances generate a maximum intrinsic gain of 10 4 V/V, enabling the development of zero- V GS -load logic inverters with voltage gains up to 251 V/V at a −3 V operation voltage ( V DD ). Additionally, hybrid complementary inverters by integrating with amorphous indium gallium zinc oxide (IGZO) exhibit ultra-high voltage gains of 841 V/V at a V DD of 5 V and 7436 V/V at a V DD of 30 V, potentially setting a new benchmark for logic inverters across various semiconductor systems. These results open new avenues for advancements in low-voltage organic and hybrid logics tailored for portable and wearable electronics. Using thin AlO x as dielectrics, low-voltage polymer monolayer TFTs were attained with a SS of 86 mV dec −1 . The resultant unipolar and complementary inverters exhibited high voltage gains of 251 V/V at V DD = −3 V and 841 V/V at V DD = 5 V.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4tc01715c</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1117-8106</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2024-07, Vol.12 (26), p.9562-957
issn 2050-7526
2050-7534
language eng
recordid cdi_rsc_primary_d4tc01715c
source Royal Society of Chemistry
subjects Current leakage
Gallium
High gain
High voltages
Indium gallium zinc oxide
Integrated circuits
Inverters
Leakage current
Logic
Monolayers
Photolithography
Polymer films
Polymers
Power consumption
Semiconductor devices
Thin film transistors
Transistors
Zinc oxide
title Low-voltage polymer monolayer transistors for high-gain unipolar and complementary logic inverters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A28%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-voltage%20polymer%20monolayer%20transistors%20for%20high-gain%20unipolar%20and%20complementary%20logic%20inverters&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Cheng,%20Miao&rft.date=2024-07-04&rft.volume=12&rft.issue=26&rft.spage=9562&rft.epage=957&rft.pages=9562-957&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d4tc01715c&rft_dat=%3Cproquest_rsc_p%3E3075686899%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c170t-1150e2cf7ddd69d5a5d5038e4cdaad7e1ef4af2e1cc268f7ef737b10b5584013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3075686899&rft_id=info:pmid/&rfr_iscdi=true