Loading…
Low Temperature Catalytic Converter Durability
In this study quantitative techniques were established to assess the low temperature durability of commercially available mat systems. A new low temperature dynamic resistive thermal exposure (LT-RTE) test method was developed. The mats were evaluated in thermal cycling with maximum substrate skin t...
Saved in:
Main Authors: | , |
---|---|
Format: | Report |
Language: | English |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study quantitative techniques were established to assess the low temperature durability of commercially available mat systems. A new low temperature dynamic resistive thermal exposure (LT-RTE) test method was developed. The mats were evaluated in thermal cycling with maximum substrate skin temperatures from 280°C to 450°C.
Results indicate that at low use temperatures the residual shear strength of the mat fell to ∼5-15KPa following 280°C cycling. Under the same LT-RTE exposure conditions an equivalent mat system, following thermal preconditioning to 500°C for 3 hours, possessed a residual shear strength of ∼30KPa. An alternative mat system with a lower shot content fiber was also evaluated, following the same thermal preconditioning previously described. This alternative mat was found to exhibit substantially higher residual shear strengths following LT-RTE aging. A residual shear strength of ∼95KPa was observed for this alternative mat following 280°C LT-RTE aging. This represents a substantial increase in low temperature behavior.
This study demonstrates that ceramic substrates may be packaged durably for use at low temperature operating conditions. |
---|---|
ISSN: | 0148-7191 2688-3627 |
DOI: | 10.4271/2000-01-0220 |