Loading…
Thermal-Mechanical Finite Element Analysis of V-ribbed Belt Drive Operation
This paper investigates the effect of ambient temperature on the performance characteristics of an automotive poly-rib belt operating in an under-the-hood temperature environment. A three-dimensional dynamic finite element model consisting of a driver pulley, a driven pulley, and a complete V-ribbed...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Report |
Language: | English |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper investigates the effect of ambient temperature on the performance characteristics of an automotive poly-rib belt operating in an under-the-hood temperature environment. A three-dimensional dynamic finite element model consisting of a driver pulley, a driven pulley, and a complete V-ribbed belt was constructed. Belt tension and rotational speed were controlled by means of loading and boundary inputs. Belt construction accounts for three different elastomeric compounds and a single layer of helical wound reinforcing cord. Rubber was considered as hyperelastic material. Cord is linear elastic. The material model was implemented in ABAQUS/Explicit for the simulation. Analysis was focused on rib flank and tip since stress concentrations in these regions are known to contribute to crack initiation and fatigue failure. |
---|---|
ISSN: | 0148-7191 2688-3627 |
DOI: | 10.4271/2003-01-0925 |