Loading…
Experimental Study on Verification of Alloy ASTM A510 High-Speed Micro Turning by Parameters Validation through Ranking Algorithm
In the details and assembly, in the range of less than 1 mm, the number of functions increases, and the demand for industrial products in which the size and characteristics of components are decreasing is increasing. Micromachining is the most basic technology for producing these small parts and com...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Report |
Language: | English |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the details and assembly, in the range of less than 1 mm, the number of functions increases, and the demand for industrial products in which the size and characteristics of components are decreasing is increasing. Micromachining is the most basic technology for producing these small parts and components. In this study, a series of turning operations, micromachining parameters, were performed under microscopic conditions to obtain the best response for the benefit of the industry. The needle is very high. Speed (3000, 3500, 4000 rpm), pre- (20, 40, 80 μm / sec), depth of cut (0.2.0.4.0.8 μm), tool radius (0.4.08, 1, 2 mm). Surface quality, material removal rates, energy consumption, and tool wear differences for various input process variables were investigated. Once the experiment is complete, we will develop an optimization strategy for this set of input parameters to improve responsiveness using the Grey Relational Analysis (GRA) and ANOVA. Therefore, the model can create micro-process parameters to achieve the highest product accuracy and improved performance. |
---|---|
ISSN: | 0148-7191 2688-3627 |
DOI: | 10.4271/2019-28-0071 |