Loading…
Taguchi Based Vikor Method for Optimization of Cutting Parameters for Improving the Efficiency in Machining Process by Considering the Effect of Tool Nose Radius
In order to take advantage of the machining characteristics of magnesium it is useful to consider recommended tool design and angles. The geometry of the tool can have a large influence on the machining process. Tool geometry can be used to aid with chip flow and clearance, reduce excessive heat gen...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Report |
Language: | English |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to take advantage of the machining characteristics of magnesium it is useful to consider recommended tool design and angles. The geometry of the tool can have a large influence on the machining process. Tool geometry can be used to aid with chip flow and clearance, reduce excessive heat generation, reduce tool build up, enable greater feed rates to be employed and improved tool life. This paper presents a new approach for the optimization of Machining parameters on face Milling of ZE41 with multiple responses based on Taughi orthogonal array with VIKOR. Machining tests are carried out 12 mm diameter of insert having 1 flute under dry condition. In this study, Machining parameters namely cutting speed, feed and Depth of Cut and Tool Node radius are optimized with the considerations of multi responses such as surface roughness, Material Removal rate, Tool Wear and Trust Force. A VIKOR grade is obtained from the VIKOR analysis. Based on the VIKOR grade, optimum levels of parameters have been identified and significant contribution of parameters is determined by ANOVA. Confirmation test is conducted to validate the test result. Experimental results have shown that the responses in Machining process can be improved effectively through the VIKOR approach. |
---|---|
ISSN: | 0148-7191 2688-3627 |
DOI: | 10.4271/2019-28-0138 |