Loading…

Efficient reconstruction of Raman spectroscopy imaging based on compressive sensing

Raman Spectroscopy Imaging requires long periods of time for the data acquisition and subsequent treatment of the spectral chemical images. Recently, Compressed Sensing (CS) technique has been used satisfactorily in Raman Spectroscopy Imaging, reducing the acquisition time by simultaneously sensing...

Full description

Saved in:
Bibliographic Details
Published in:Dyna (Medellín, Colombia) Colombia), 2014-12, Vol.81 (188), p.116-124
Main Authors: Galvis-Carreño, Diana Fernanda, Mejía-Melgarejo, Yuri Hercilia, Arguello-Fuentes, Henry
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2762-5d4c68426bbe20284c9d955c99b923f4a4008156cee78a48d5937df67ac918183
cites cdi_FETCH-LOGICAL-c2762-5d4c68426bbe20284c9d955c99b923f4a4008156cee78a48d5937df67ac918183
container_end_page 124
container_issue 188
container_start_page 116
container_title Dyna (Medellín, Colombia)
container_volume 81
creator Galvis-Carreño, Diana Fernanda
Mejía-Melgarejo, Yuri Hercilia
Arguello-Fuentes, Henry
description Raman Spectroscopy Imaging requires long periods of time for the data acquisition and subsequent treatment of the spectral chemical images. Recently, Compressed Sensing (CS) technique has been used satisfactorily in Raman Spectroscopy Imaging, reducing the acquisition time by simultaneously sensing and compressing the underlying Raman spectral signals. The Coded Aperture Snapshot Spectral Imager (CASSI) is an optical architecture that applied effectively the CS technique in Raman Spectroscopy Imaging. The main optical element of CASSI system is a coded aperture, which can transmit or block the information from the underlying scene. The principal design variable in the coded apertures is the percentage of transmissive elements or transmittance. This paper describes the technique of CS in Raman Spectroscopy imaging by using the CASSI system and realizes the selection of the optimal transmittance values of the coded apertures to ensure an efficient recovery of Raman Images. Diverse simulations are performed to determine the Peak Signal to Noise Ratio (PSNR) of the reconstructed Raman data cubes as a function of the transmittance of the coded apertures, the size of the underlying Raman data cubes and the number of projections expressed in terms of the compression ratio.
doi_str_mv 10.15446/dyna.v81n188.41162
format article
fullrecord <record><control><sourceid>proquest_sciel</sourceid><recordid>TN_cdi_scielo_journals_S0012_73532014000600014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><scielo_id>S0012_73532014000600014</scielo_id><sourcerecordid>3669833011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2762-5d4c68426bbe20284c9d955c99b923f4a4008156cee78a48d5937df67ac918183</originalsourceid><addsrcrecordid>eNpFkEtrwzAQhEVpoWnaX9CLoGe7Wr0sH0tIHxAoNO1ZyLIcHBLJlZxA_n2VB_Sw7GFnZvkGoUcgJQjO5XN78KbcK_CgVMkBJL1CE8q4LCgodo0mhAAtKibYLbpLaU0IF0DUBC3nXdfb3vkRR2eDT2Pc2bEPHocOf5mt8TgNzo4xJBuGA-63ZtX7FW5Mci3OMhu2Q3Qp9XuHk_MpH-_RTWc2yT1c9hT9vM6_Z-_F4vPtY_ayKCytJC1Ey61UnMqmcZRQxW3d1kLYum5qyjpuOCEKhLTOVcpw1YqaVW0nK2NrUBlrispzbsoAm6DXYRd9fqiXR1p9pKUEcgqReYBnw9PZMMTwu3Np_LeArGTOp4xlFTurbIZO0XV6iBk7HjQQfapbH-vWl7r1qW72B-UvckA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676593233</pqid></control><display><type>article</type><title>Efficient reconstruction of Raman spectroscopy imaging based on compressive sensing</title><source>ProQuest - Publicly Available Content Database</source><creator>Galvis-Carreño, Diana Fernanda ; Mejía-Melgarejo, Yuri Hercilia ; Arguello-Fuentes, Henry</creator><creatorcontrib>Galvis-Carreño, Diana Fernanda ; Mejía-Melgarejo, Yuri Hercilia ; Arguello-Fuentes, Henry</creatorcontrib><description>Raman Spectroscopy Imaging requires long periods of time for the data acquisition and subsequent treatment of the spectral chemical images. Recently, Compressed Sensing (CS) technique has been used satisfactorily in Raman Spectroscopy Imaging, reducing the acquisition time by simultaneously sensing and compressing the underlying Raman spectral signals. The Coded Aperture Snapshot Spectral Imager (CASSI) is an optical architecture that applied effectively the CS technique in Raman Spectroscopy Imaging. The main optical element of CASSI system is a coded aperture, which can transmit or block the information from the underlying scene. The principal design variable in the coded apertures is the percentage of transmissive elements or transmittance. This paper describes the technique of CS in Raman Spectroscopy imaging by using the CASSI system and realizes the selection of the optimal transmittance values of the coded apertures to ensure an efficient recovery of Raman Images. Diverse simulations are performed to determine the Peak Signal to Noise Ratio (PSNR) of the reconstructed Raman data cubes as a function of the transmittance of the coded apertures, the size of the underlying Raman data cubes and the number of projections expressed in terms of the compression ratio.</description><identifier>ISSN: 0012-7353</identifier><identifier>EISSN: 2346-2183</identifier><identifier>DOI: 10.15446/dyna.v81n188.41162</identifier><language>eng</language><publisher>Bogota: Universidad Nacional de Colombia</publisher><subject>ENGINEERING, MULTIDISCIPLINARY</subject><ispartof>Dyna (Medellín, Colombia), 2014-12, Vol.81 (188), p.116-124</ispartof><rights>Copyright Universidad Nacional de Colombia 2014</rights><rights>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2762-5d4c68426bbe20284c9d955c99b923f4a4008156cee78a48d5937df67ac918183</citedby><cites>FETCH-LOGICAL-c2762-5d4c68426bbe20284c9d955c99b923f4a4008156cee78a48d5937df67ac918183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1676593233?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25752,27923,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Galvis-Carreño, Diana Fernanda</creatorcontrib><creatorcontrib>Mejía-Melgarejo, Yuri Hercilia</creatorcontrib><creatorcontrib>Arguello-Fuentes, Henry</creatorcontrib><title>Efficient reconstruction of Raman spectroscopy imaging based on compressive sensing</title><title>Dyna (Medellín, Colombia)</title><addtitle>Dyna rev.fac.nac.minas</addtitle><description>Raman Spectroscopy Imaging requires long periods of time for the data acquisition and subsequent treatment of the spectral chemical images. Recently, Compressed Sensing (CS) technique has been used satisfactorily in Raman Spectroscopy Imaging, reducing the acquisition time by simultaneously sensing and compressing the underlying Raman spectral signals. The Coded Aperture Snapshot Spectral Imager (CASSI) is an optical architecture that applied effectively the CS technique in Raman Spectroscopy Imaging. The main optical element of CASSI system is a coded aperture, which can transmit or block the information from the underlying scene. The principal design variable in the coded apertures is the percentage of transmissive elements or transmittance. This paper describes the technique of CS in Raman Spectroscopy imaging by using the CASSI system and realizes the selection of the optimal transmittance values of the coded apertures to ensure an efficient recovery of Raman Images. Diverse simulations are performed to determine the Peak Signal to Noise Ratio (PSNR) of the reconstructed Raman data cubes as a function of the transmittance of the coded apertures, the size of the underlying Raman data cubes and the number of projections expressed in terms of the compression ratio.</description><subject>ENGINEERING, MULTIDISCIPLINARY</subject><issn>0012-7353</issn><issn>2346-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpFkEtrwzAQhEVpoWnaX9CLoGe7Wr0sH0tIHxAoNO1ZyLIcHBLJlZxA_n2VB_Sw7GFnZvkGoUcgJQjO5XN78KbcK_CgVMkBJL1CE8q4LCgodo0mhAAtKibYLbpLaU0IF0DUBC3nXdfb3vkRR2eDT2Pc2bEPHocOf5mt8TgNzo4xJBuGA-63ZtX7FW5Mci3OMhu2Q3Qp9XuHk_MpH-_RTWc2yT1c9hT9vM6_Z-_F4vPtY_ayKCytJC1Ey61UnMqmcZRQxW3d1kLYum5qyjpuOCEKhLTOVcpw1YqaVW0nK2NrUBlrispzbsoAm6DXYRd9fqiXR1p9pKUEcgqReYBnw9PZMMTwu3Np_LeArGTOp4xlFTurbIZO0XV6iBk7HjQQfapbH-vWl7r1qW72B-UvckA</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Galvis-Carreño, Diana Fernanda</creator><creator>Mejía-Melgarejo, Yuri Hercilia</creator><creator>Arguello-Fuentes, Henry</creator><general>Universidad Nacional de Colombia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>GPN</scope></search><sort><creationdate>20141201</creationdate><title>Efficient reconstruction of Raman spectroscopy imaging based on compressive sensing</title><author>Galvis-Carreño, Diana Fernanda ; Mejía-Melgarejo, Yuri Hercilia ; Arguello-Fuentes, Henry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2762-5d4c68426bbe20284c9d955c99b923f4a4008156cee78a48d5937df67ac918183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ENGINEERING, MULTIDISCIPLINARY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galvis-Carreño, Diana Fernanda</creatorcontrib><creatorcontrib>Mejía-Melgarejo, Yuri Hercilia</creatorcontrib><creatorcontrib>Arguello-Fuentes, Henry</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America &amp; Iberia Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>SciELO</collection><jtitle>Dyna (Medellín, Colombia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galvis-Carreño, Diana Fernanda</au><au>Mejía-Melgarejo, Yuri Hercilia</au><au>Arguello-Fuentes, Henry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient reconstruction of Raman spectroscopy imaging based on compressive sensing</atitle><jtitle>Dyna (Medellín, Colombia)</jtitle><addtitle>Dyna rev.fac.nac.minas</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>81</volume><issue>188</issue><spage>116</spage><epage>124</epage><pages>116-124</pages><issn>0012-7353</issn><eissn>2346-2183</eissn><abstract>Raman Spectroscopy Imaging requires long periods of time for the data acquisition and subsequent treatment of the spectral chemical images. Recently, Compressed Sensing (CS) technique has been used satisfactorily in Raman Spectroscopy Imaging, reducing the acquisition time by simultaneously sensing and compressing the underlying Raman spectral signals. The Coded Aperture Snapshot Spectral Imager (CASSI) is an optical architecture that applied effectively the CS technique in Raman Spectroscopy Imaging. The main optical element of CASSI system is a coded aperture, which can transmit or block the information from the underlying scene. The principal design variable in the coded apertures is the percentage of transmissive elements or transmittance. This paper describes the technique of CS in Raman Spectroscopy imaging by using the CASSI system and realizes the selection of the optimal transmittance values of the coded apertures to ensure an efficient recovery of Raman Images. Diverse simulations are performed to determine the Peak Signal to Noise Ratio (PSNR) of the reconstructed Raman data cubes as a function of the transmittance of the coded apertures, the size of the underlying Raman data cubes and the number of projections expressed in terms of the compression ratio.</abstract><cop>Bogota</cop><pub>Universidad Nacional de Colombia</pub><doi>10.15446/dyna.v81n188.41162</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-7353
ispartof Dyna (Medellín, Colombia), 2014-12, Vol.81 (188), p.116-124
issn 0012-7353
2346-2183
language eng
recordid cdi_scielo_journals_S0012_73532014000600014
source ProQuest - Publicly Available Content Database
subjects ENGINEERING, MULTIDISCIPLINARY
title Efficient reconstruction of Raman spectroscopy imaging based on compressive sensing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sciel&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20reconstruction%20of%20Raman%20spectroscopy%20imaging%20based%20on%20compressive%20sensing&rft.jtitle=Dyna%20(Medelli%CC%81n,%20Colombia)&rft.au=Galvis-Carre%C3%B1o,%20Diana%20Fernanda&rft.date=2014-12-01&rft.volume=81&rft.issue=188&rft.spage=116&rft.epage=124&rft.pages=116-124&rft.issn=0012-7353&rft.eissn=2346-2183&rft_id=info:doi/10.15446/dyna.v81n188.41162&rft_dat=%3Cproquest_sciel%3E3669833011%3C/proquest_sciel%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2762-5d4c68426bbe20284c9d955c99b923f4a4008156cee78a48d5937df67ac918183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1676593233&rft_id=info:pmid/&rft_scielo_id=S0012_73532014000600014&rfr_iscdi=true