Loading…
Insights into cytochrome bc1 complex binding mode of antimalarial 2-hydroxy-1,4-naphthoquinones through molecular modelling
Malaria persists as a major public health problem. Atovaquone is a drug that inhibits the respiratory chain of Plasmodium falciparum, but with serious limitations like known resistance, low bioavailability and high plasma protein binding. The aim of this work was to perform molecular modelling studi...
Saved in:
Published in: | Memórias do Instituto Oswaldo Cruz 2017-04, Vol.112 (4), p.299-308 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Malaria persists as a major public health problem. Atovaquone is a drug that inhibits the respiratory chain of Plasmodium falciparum, but with serious limitations like known resistance, low bioavailability and high plasma protein binding.
The aim of this work was to perform molecular modelling studies of 2-hydroxy-1,4-naphthoquinones analogues of atovaquone on the Qo site of P. falciparum cytochrome bc1 complex (Pfbc1) to suggest structural modifications that could improve their antimalarial activity.
We have built the homology model of the cytochrome b (CYB) and Rieske iron-sulfur protein (ISP) subunits from Pfbc1 and performed the molecular docking of 41 2-hydroxy-1,4-naphthoquinones with known in vitro antimalarial activity and predicted to act on this target.
Results suggest that large hydrophobic R2 substituents may be important for filling the deep hydrophobic Qo site pocket. Moreover, our analysis indicates that the H-donor 2-hydroxyl group may not be crucial for efficient binding and inhibition of Pfbc1 by these atovaquone analogues. The C1 carbonyl group (H-acceptor) is more frequently involved in the important hydrogen bonding interaction with His152 of the Rieske ISP subunit.
Additional interactions involving residues such as Ile258 and residues required for efficient catalysis (e.g., Glu261) could be explored in drug design to avoid development of drug resistance by the parasite. |
---|---|
ISSN: | 0074-0276 1678-8060 1678-8060 0074-0276 |
DOI: | 10.1590/0074-02760160417 |