Loading…
Correção da prevalência autorreferida em estudos epidemiológicos com grandes amostras
Resumo: As prevalências de doenças são úteis para a formulação e avaliação de políticas públicas. A medida autorreferida é comumente utilizada por ser fácil de ser coletada e não exigir treinamento específico em saúde ou custo adicional. Todavia, esse processo de mensuração pode gerar uma medida env...
Saved in:
Published in: | Cadernos de saúde pública 2016, Vol.32 (12) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | eng ; por |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Resumo: As prevalências de doenças são úteis para a formulação e avaliação de políticas públicas. A medida autorreferida é comumente utilizada por ser fácil de ser coletada e não exigir treinamento específico em saúde ou custo adicional. Todavia, esse processo de mensuração pode gerar uma medida enviesada. Objetivou-se apresentar os métodos existentes para ajustar a prevalência, com base na autorreferida, focando nos problemas computacionais no caso de amostras grandes e propondo uma solução alternativa. Os métodos foram divididos em: algébrico, de simples execução, porém não é aplicável em qualquer combinação de prevalência autorreferida, especificidade e sensibilidade; e Bayesiano, que não apresenta a restrição da estratégia anterior, mas apresenta problemas computacionais na sua aplicação em computadores pessoais para amostras grandes. Esses problemas impedem a implantação direta do método já existente, havendo a necessidade da apresentação de uma estratégia aproximada que viabilize a estimação. O método empírico proposto para a aplicação em amostras grandes consiste em reduzir o tamanho da amostra até o limite máximo possível de ser calculado pelo software, mantendo a proporção de doentes. O método foi considerado adequado, pois converge para o verdadeiro valor. No exemplo, uma prevalência autorreferida de 5%, com sensibilidade = 0,4 e especificidade = 0,9 foi corrigida para 0,17% (IC95%: 0,10-0,24). O estudo apresentou os métodos existentes para ajuste de prevalências, bem como uma nova estratégia para prevalências oriundas de grandes amostras, permitindo a obtenção de estimativas mais próximas às verdadeiras, sem a necessidade de mensurar diretamente todos os indivíduos. |
---|---|
ISSN: | 1678-4464 |
DOI: | 10.1590/0102-311x00050816 |