Loading…

Enantiomerically pure D-phenylglycine production using immobilized Pseudomonas aeruginosa 10145 in calcium alginate beads

In a preliminary work in our laboratory, a Pseudomonas aeruginosa strain was found to have enzymatic activity to convert arylaminonitriles into D-amino acids. This enzymatic activity was increased by induction to produce enantiomerically pure D-phenylglycine using 2-phenyl-2-aminoacetonitrile as sta...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Brazilian Chemical Society 2007, Vol.18 (3), p.566-571
Main Authors: Alonso, Fábio O. M., Antunes, O. A. C., Oestreicher, Enrique G.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In a preliminary work in our laboratory, a Pseudomonas aeruginosa strain was found to have enzymatic activity to convert arylaminonitriles into D-amino acids. This enzymatic activity was increased by induction to produce enantiomerically pure D-phenylglycine using 2-phenyl-2-aminoacetonitrile as starting material. In this work, the best conditions leading to this transformation are described. In order to increase the biocatalyst potential use, cells of Pseudomonas aeruginosa 10145 were entrapped in calcium alginate gel beads. Two different concentration of sodium alginate were used to immobilize these cells. Beads morphology was demonstrated by scanning electron microscopy (SEM). The beads with higher porosity, formed with 1.5% (m/v) of sodium alginate led to the best conversion of 2-phenyl-2-aminoacetonitrile into D-phenylglycine (20% of conversion, 3.0 h of reaction enantiomeric excess higher than 98%). Recycling was performed in four repeated batch reactions, which proved the biocatalyst activity maintenance.
ISSN:0103-5053
1678-4790
DOI:10.1590/S0103-50532007000300011